首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, a sensitive and rapid method for hydrogen peroxide (H(2)O(2)) determination has been developed with the aid of oxidation decolorization of methyl orange (MO) by using Fenton reactions, because the decolorization extent of MO solution (at the maximum absorption wavelength of 507 nm) is proportion to the concentration of H(2)O(2). Under optimum conditions, this spectrophotometric method for the H(2)O(2) analysis yields a dynamic range of H(2)O(2) concentration from 5.0 x 10(-7) to 1.0 x 10(-4) mol L(-1) (r=0.997) and a detection limit (3 sigma/k) of 2.0 x 10(-7) mol L(-1). This method for the determination of H(2)O(2) (0.04 mmol L(-1)) is able to tolerate the interference from NaCl (0-5.0 mmol L(-1)), Na(2)SO(4) (0-5.0 mmol L(-1)), MgCl(2) (0-5.0 mmol L(-1)), sodium humate (0-0.1 mmol L(-1)), benzene (0-0.2 mmol L(-1)), toluene (0-0.2 mmol L(-1)), chlorobenzene (0-0.2 mmol L(-1)) and chloroform (0-0.2 mmol L(-1)). The analysis results for practical rainwater samples are in good agreement with the classical N,N-diethyl-p-phenylenediamine (DPD) method for H(2)O(2) determination.  相似文献   

2.
Zhang S  Wu Y  Li H 《Talanta》2000,53(3):609-616
A novel chemiluminescence (CL) system, cobalt(II)-hydrogen peroxide-hydrogencarbonate without luminescent reagents, was described. When cobalt(II) was injected into mixed solution of 0.4 mol l(-1) hydrogencarbonate and 0.01 mol l(-1) hydrogen peroxide in a flow injection system, CL occurred, which was significantly enhanced when rhodamine B coexisted. The CL emission intensity was found correlation with the concentration of cobalt(II) in the range of 2.0x10(-9)-1.0x10(-5) mol l(-1) with a detection limit of 1.2x10(-9) mol l(-1) cobalt(II). The relative standard derivative (RSD) for 5.0x10(-7) mol l(-1) cobalt(II) was 1.6% based on nine repetitive measurements. In addition to cobalt(II), other metal ions were also investigated, and only chromium(III) gave out measurable CL emission. The possible mechanism was discussed based on the CL emission spectrum.  相似文献   

3.
Li M  Ellern A  Espenson JH 《Inorganic chemistry》2005,44(10):3690-3699
The new compound {(PhS)(2)ReO(mu-SPh)}(2), 1, was synthesized from Re(2)O(7) and PhSH and then used as the synthon for a number of hitherto unknown oxorhenium(V) compounds. Reactions between dithiols and 1 (2:1 ratio) afford {PhSReO(dt)}(2), where the dithiols, dtH(2), are 1,2-ethanedithiol (edtH(2)), 1,3-propanedithiol (pdtH(2)), 1,3-butanedithiol (pdtMeH(2)), 1,2-benzenedithiol (bdtH(2)), 2-(mercaptomethyl)thiophenol (mtpH(2)), and 2-mercaptoethyl sulfide (mesH(2)). Similar reactions carried out with a 3:1 ratio of dtH(2) to 1 afford [(ReO)(2)(dt)(3)], dt = edt, pdt. When NEt(3) was introduced prior to the 3:1 reaction between edtH(2) and 1, a compound containing an anionic complex was isolated, [PPh(4)][ReO(edt)(2)]. The new compounds were characterized analytically, spectroscopically, and crystallographically. The Re-O groups in two of the compounds, 1 and {ReO(mu-SPh)(bdt)}(2), exist in rare anti orientations; the others adopt the more familiar syn geometry, as discussed. Selected monomerization reactions of {PhSReO(dt)}(2) were also carried out: {PhSReO(dt)}(2) + 2L = 2[PhSReO(dt)L]. The rate for L = 4-phenylpyridine is given by v = {k(a)[L] + k(b)[L](2)} x [{PhSReO(dt)}(2)], as it is for the reactions of {MeReO(dt)}(2); for all of these compounds, the reaction proceeds nearly entirely by the third-order pathway. Values of k(b)/L(2) mol(-2) s(-1) at 25.0 degrees C are 5.8 x 10(2) (mtp), 2.97 x 10(3) (pdt), 4.62 x 10(5) (edt), and 3.87 x 10(5) (bdt). The rate law for the reactions of {PhSReO(dt)}(2) with L = PAr(3) is v = k(a)[L]/{1 + kappa[L]} x [{PhSReO(dt)}(2)]. For PPh(3), values at 25.0 degrees C of k(a)/L mol(-1) s(-1) (kappa/L mol(-1)) for {PhSReO(dt)}(2) are 9.64 x 10(-2) (1.87) for mtp, 3.43 x 10(-2) (0.492) for pdt, 1.91 (1.42) for edt, 1.84 x 10(-2) (0.82) for bdt, and 1.14 x 10(3) (10.6) for 1. Mechanisms are proposed that are consistent with the data obtained and with earlier work.  相似文献   

4.
C Fan  H Wang  D Zhu  G Wagner  G Li 《Analytical sciences》2001,17(2):273-276
Horseradish peroxidase was incorporated in a kieselguhr membrane. The electron-transfer process of the enzyme was examined by cyclic voltammetry. It was observed that the electron-transfer reactivity of horseradish peroxidase was greatly enhanced, and that direct electrochemistry was accordingly feasible. Using the merits of the direct electron-transfer reactivity of horseradish peroxidase and its specific enzymatic catalysis towards hydrogen peroxide, an unmediated hydrogen peroxide biosensor was constructed. The calibration plot of this hydrogen peroxide sensor was linear in the range of 2.0 x 10(-6) mol/L - 6.5 x 10(-4) mol/L. The relative standard deviation was 4.1% for 6 successive determinations at a concentration of 1.0 x 10(-4) mol/L. The detection limit was 1.0 x 10(-6) mol/L.  相似文献   

5.
In the proton transfer reactions between [Fe 4Y 4Cl 4] (2-) (Y = S or Se) and [pyrH] (+) (pyr = pyrrolidine) in the presence of a variety of nucleophiles (L = I (-), Br (-), PhS (-), EtS (-) or ButNC), initial binding of the nucleophile can occur to generate [Fe 4Y 4Cl 4(L)] ( n- ). The subsequent rate of proton transfer depends markedly on the nature of L. Stopped-flow kinetic studies show that proton transfer from [pyrH] (+) to [Fe 4Y 4Cl 4] (2-) { (S) k 4 = (2.1 +/- 0.5) x 10 (4) dm (3) mol (-1) s (-1); (Se) k 4 = (8.0 +/- 0.5) x 10 (3) dm (3) mol (-1) s (-1)} is increased by prior binding of L = PhS (-) or Bu ( t )NC to form [Fe 4Y 4Cl 4(L)] (n-) ( (S) k 7 (L) approximately 1 x 10 (6) dm (3) mol (-1) s (-1)), but prior binding of L = I (-), Br (-), or EtS (-) to the clusters inhibits the rate of proton transfer {e.g. (S) k 7 (I) = (6.0 +/- 0.8) x 10 (2) dm (3) mol (-1) s (-1); (Se) k 7 (I) = (4.5 +/- 0.5) x 10 (2) dm (3) mol (-1) s (-1)}. This behavior is correlated with the bonding characteristics of L and the effect this has on bond length reorganization within the cluster upon proton transfer.  相似文献   

6.
A Pd/IrO(2) co-electrodeposited glassy carbon electrode was prepared and the electrochemical behavior of glutathione (GSH) at this chemically modified electrode (CME) has been studied by cyclic voltammetry (CV). The results indicated that the modified electrode efficiently exhibited electrocatalytic oxidation for GSH with relatively high sensitivity, stability, and long-life. Coupled with high-performance liquid chromatography (HPLC), the Pd/IrO(2) modified electrode was utilized for the electrochemical detection (ECD) of the thiocompounds, glutathione and cysteine (Cys). The peak currents were linear with the substance concentrations in the range of 1.0 x 10(-5) mol L(-1) to 8.0 x 10(-4) mol L(-1) for GSH and 4.0 x 10(-6) mol L(-1) to 2.0 x 10(-4) mol L(-1) for Cys. The detection limits were 2.0 x 10(-6) mol L(-1) for GSH and 5.0 x 10(-7) mol L(-1) for Cys with S/N of 3. The method has been successfully applied to assess the contents of GSH and Cys in rat brain microdialysates.  相似文献   

7.
Zhou Y  Nagaoka T  Li F  Zhu G 《Talanta》1999,48(2):461-467
A novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO(4). Hydrogen peroxide can be directly determined by luminol-KIO(4)-H(2)O(2) CL system. The detection limit was 3.0x10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0x10(-7)-6.0x10(-4) mol l(-1). The relative standard deviation of H(2)O(2) was 1.1% for 2.0x10(-6) mol l(-1) (N=11). Glucose was indirectly determined through measuring the H(2)O(2) generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H(2)O(2), which, in turn, coupled with the luminol-KIO(4)-H(2)O(2) CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mug ml(-1). The relative standard deviation was 2.1% for 10 mug ml(-1) (N=11). Detection limit of glucose was 0.08 mug ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO(4)-H(2)O(2) CL system. The calibration curve was linear over the range of 1.0x10(-7)-1.0x10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0x10(-7) mol l(-1) (N=11). Detection limit of ascorbic acid was 6.0x10(-8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection.  相似文献   

8.
六氰合铁酸铜钴-多壁碳纳米管修饰电极研究   总被引:1,自引:0,他引:1  
采用电沉积方法制备六氰合铁酸铜钴-多壁碳纳米管复合修饰电极(CuCoHCF-MWCNTs/GCE).研究碳纳米管用量、电解液组成对该修饰电极性能的影响.结果表明,与单一的六氰合铁酸铜钴薄膜修饰电极相比,六氰合铁酸铜钴-多壁碳纳米管复合修饰电极具有更优良的电化学特性,以其催化氧化过氧化氢,峰电流与过氧化氢浓度在3.16×10-5~2.92×10-3mol·L-1范围内呈良好的线性关系,线性回归方程为ip(μA)=0.5529+1.1299C(×10-4mol·L-1),相关系数r=0.9966,检出限为1.75×10-5mol·L-1.  相似文献   

9.
Zhu M  Huang X  Liu L  Shen H 《Talanta》1997,44(8):1407-1412
A new hydrogen donor for peroxidase, Eriochrome black T, was reported for the first time. Steady-state catalytic velocity depends upon enzyme and substrate concentrations, and a Michaelis-Menten K(m) value of 1.72x10(-5) mol l(-1) and a V(max) value of 4.43x10(-3) s(-1) were measured at pH 8.6. Trace amount of hydrogen peroxide (2x10(-7)-1.0x10(-5) mol l(-1)) was determined in aqueous solution by using the cleavage of Eriochrome black T catalyzed by peroxidase. The method is simple and practical, with high sensitivity and enzymatic activity.  相似文献   

10.
Hemoglobin can exhibit not only a direct electron transfer reacting after being entrapped in a DNA membrane, but also a greatly enhanced peroxidase activity toward the reduction of hydrogen peroxide. Based on the direct electrochemical property and nice enzymatic activity of the protein in a DNA membrane, a reagentless hydrogen peroxide biosensor was prepared. The peak current related to hydrogen peroxide was linearly proportional to its concentration in the range of 1.9 x 10(-6)-6.8 x 10(-4) mol L(-1). The detection limit was 1 x 10(-6) mol/L.  相似文献   

11.
过氧化物模拟酶催化的苯基荧光酮氧化反应及其分析应用   总被引:4,自引:0,他引:4  
郭忠先  沈含熙 《分析化学》1998,26(12):1451-1455
在NH4Cl-NH4OH缓冲介质中,氯化血红素(Hemin)有显著的过氧化物模拟酶活性,催化过程化氢氧化苯基荧光酮褪色。本文探讨了反应机理,比较Hemin与天然酶催化性能,考察反应条件和共存物质影响,从而提出测定Hemin和过氧化氢的高灵敏分光光度法,线性范围分别为0 ̄3.0×10^-8mol/L和0 ̄1.2×10^5mol/L;检测限(3σ)分别为1.8×10^-10mol/L和1.4×10^7  相似文献   

12.
Hydrogen peroxide (H2O2) present in honey was rapidly determined by the differential amperometric method in association with flow-injection analysis (FIA) and a tubular reactor containing immobilized enzymes. A gold electrode modified by electrochemical deposition of platinum was employed as working electrode. Hydrogen peroxide was quantified in 14 samples of Brazilian commercial honeys using amperometric differential measurements at +0.60V vs. Ag/AgCl((sat)). For the enzymatic consumption of H2O2, a tubular reactor containing immobilized peroxidase was constructed using an immobilization of enzymes on Amberlite IRA-743 resin. The linear dynamic range in H2O2 extends from 1 to 100 x 10(-6) mol L(-1), at pH 7.0. At flow rate of 2.0 mL min(-1) and injecting 150 microL sample volumes, the sampling frequency of the 90 determinations per hour is afforded. This method is based on three steps involving the flow-injection of: (1) the sample spiked with a standard solution, (2) the pure sample and (3) the enzymatically treated sample with peroxidase immobilized. The reproducibility of the current peaks for hydrogen peroxide in 10(-5) mol L(-1) range concentration showed a relative standard deviation (R.S.D.) better than 1%. The detection limit of this method is 2.9 x 10(-7) mol L(-1). The honey samples analyses were compared with the parallel spectrophotometric determination, and showed an excellent correlation between the methods.  相似文献   

13.
A biosensor based on stearic acid-graphite powder modified with sweet potato (Ipomoea batatas (L.) Lam.) tissue as peroxidase source was constructed and applied in organic solvents. Several parameters were studied to evaluate the performance of this biosensor such as stearic acid-graphite powder and tissue composition, type and concentration of supporting electrolyte, organic solvents, water/organic solvent ratio (% v/v) and hydrogen peroxide concentration. After selection of the best conditions, the biosensor was applied for the determination of hydroquinone in cosmetic creams in methanol. At the peroxidase electrode hydroquinone is oxidized in the presence of hydrogen peroxide and the radical formed was reduced back electrochemically at -180 mV vs Ag/AgCl (3.0 mol L(-1) KCl). The reduction current obtained was proportional to the concentration of hydroquinone from 6.2 x 10(-5) to 1.5 x 10(-3) mol L(-1) (r = 0.9990) with a detection limit of 8.5 x 10(-6) mol L(-1). The recovery of hydroquinone from two samples ranged from 98.8 to 104.1% and an RSD lower than 1.0% for a solution containing 7.3 x 10(-4) mol L(-1) hydroquinone and 1.0 x 10(-3) mol L(-1) hydrogen peroxide in 0.10 mol L(-1) tetrabutylammonium bromide methanol-phosphate buffer solution (95:5% v/v) (n = 10) was obtained.  相似文献   

14.
Fan C  Gao Q  Zhu D  Wagner G  Li G 《The Analyst》2001,126(7):1086-1089
Hemoglobin was incorporated in a montmorillonite membrane. Electrochemical and spectroscopic studies revealed that the electron transfer reactivity and peroxidase activity of the protein were both enhanced. Nevertheless, its structure was still maintained native-like in the membrane. An unmediated hydrogen peroxide biosensor was accordingly prepared. The calibration plot of this H202 sensor was linear in the range of 1.0 x 10(-6)-6.0 x 10(-4) mol L(-1). The relative standard deviation was 3.1% for six successive determinations at a concentration of 1.0 x 10(-4) mol L(-1). The detection limit was 6.0 x 10(-7) mol L(-1). Possible interferences in real sample analyses are discussed.  相似文献   

15.
聚吡咯固定L-氨基酸氧化酶手性电极的制作及其应用   总被引:2,自引:0,他引:2  
孙向英  刘斌  李佳  徐金瑞 《分析化学》2000,28(6):741-744
本方法将L·氨基酸氧化酶掺杂在毗咯溶液中用电化学聚合法制备手性电极,该电极对L一苯丙氨酸测定在2.0X10-’-1.4X10-‘。ilL的底物浓度范围内呈良好的线性关系,检测限为4.0X10-‘rnoliL对DL.苯丙氨酸的平均回收率102.8%。  相似文献   

16.
基于拮抗作用检测除草剂的类囊体膜生物传感器研究   总被引:10,自引:0,他引:10  
利用除草剂对植物类囊体束缚酶分解过氧化氢的拮抗作用,研制了一种快速检测痕量除草剂的电化学生物传感器.将植物类囊体用聚乙烯醇-苯乙烯吡啶(PVA-SbQ)光敏聚合剂在紫外光诱导下产生大分子网状结构进行包埋,制成生物敏感膜,并固定在铂电极表面.根据加入除草剂时类囊体膜束缚酶分解过氧化氢活性的变化,对除草剂进行测定.在含有1×10-3mol/LNaCl,5×10-3mol/LMgCl2和0.01mol/LH2O2的Tris-HCl缓冲溶液(pH=7.4)中,基于测量0.65V处H2O2氧化电流的变化,可以对下列浓度的除草剂进行定量检测:百草枯3×10-9~1.5×10-7mol/L,敌草龙1×10-8~3×10-7mol/L,扑草净4×10-8~3×10-6mol/L,阿特拉津1×10-7~5×10-6mol/L,莠灭净1×10-7~5×10-6mol/L.利用PVA-SbQ光聚合膜固定类囊体,能够使酶的活性在低温下保持数月.  相似文献   

17.
Mori I  Takasaki K  Fujita Y  Matsuo T 《Talanta》1998,47(3):631-637
Fluorophotometric determinations of cobalt(II) and hydrogen peroxide were investigated by using the fluorescence reaction between fluorescein-hydrazide (fl-NHNH(2)), and/or hydrogen peroxide, cobalt(II), respectively. The calibration graphs were liner in the range of 0-6.0 ng cobalt(II) and 0-1000 ng hydrogen peroxide per 10 ml at an emission wavelength (E(m)) of 530 nm with an exicitation wavelength (E(x)) of 508 nm, respectively. These proposed methods were selective and simple, and the effect of foreign ions was negligible in comparison with conventional reported methods such as nitroso R,4-(2-pyridylazo)resorcinol(PAR), alizarin, pyridine-2-aldehyde-2-pyridinehydrazone, stilbazo-cobalt(II), etc.  相似文献   

18.
A pressurized CEC (pCEC) coupled with on-column chemiluminescence (CL) detection was developed for direct determination of amino acids, which was based on the principle of an enhanced effect of Cu(II)-amino acid complexes on the CL reaction between luminol and hydrogen peroxide in alkaline solution. The effects of some important factors on pCEC separation and CL intensity were systemically investigated. Baseline separation of amino acids including L-histidine (L-His), L-threonine (L-Thr), and L-tyrosine (L-Tyr) was achieved by using a monolithic column with a mobile phase of 5.0x10(-3) mol/L phosphate buffer at pH 8.0 that contained 25% v/v methanol and 5.0x10(-4) mol/L luminol and 1.0x10(-5) mol/L Cu(II) at an applied voltage of -5 kV. The calibration curves of the analytes by plotting the peak height against corresponding concentration were linear over the range of 3.2x10(-6)-3.2x10(-4) mol/L for L-His, 4.1x10(-6)-4.1x10(-4) mol/L for L-Thr, and 6.0x10(-7)-3.0x10(-4) mol/L for L-Tyr. The LODs for L-His, L-Thr, and L-Tyr were 6.4x10(-7), 8.4x10(-7), and 3.0x10(-7) mol/L (S/N = 2), respectively. The proposed method was applied to the analysis of amino acid injection sample with satisfactory results. Mean recoveries for three amino acids were from 84.3 to 89.6%.  相似文献   

19.
A highly sensitive fluorescence-quenching method for the determination of phosphorus based on the formation of an ion associate between molybdophosphate and Rhodamine B (RB) was developed. A simple flow-injection system coupled with a fluorescence detector was used to measure the fluorescence intensity at 560 nm and 580 nm as an excitation and an emission wavelength, respectively. The calibration graph for phosphorus showed a good linearity in the range of (0 - 1) x 10(-7) M (1 M = 1 mol L(-1)), and a detection limit of 1 x 10(-9) M (S/N = 3). The proposed method was successfully applied to the determination of ultratrace amounts of phosphorus in ultrapurified and purified water samples, and to the determination of trace amounts of phosphorus in commercially-available hydrogen peroxide solutions with satisfactory results.  相似文献   

20.
A new type of sol-gel organic-inorganic hybrid material was developed and used for the fabrication of an amperometric hydrogen peroxide biosensor. This material was prepared from natural chitosan and recently introduced completely water-soluble precursor, tetrakis(2-hydroxyethyl) orthosilicates (THEOS), by the sol-gel process without the addition of organic solvents and catalysts. The gelation time for the sol-gel transition and dynamic rheological properties of the resultant gel matrix could be modulated by the amount of added THEOS. The structure of the hybrid gel was made up of a network and spherical particles, as confirmed by SEM observation. By electrochemical experiments, it was found that such a hybrid gel matrix could retain the native biocatalytic activity of the entrapped horseradish peroxidase and provide a fast amperometric response to hydrogen peroxide. The linear range for the determination of hydrogen peroxide was found to be from 1.0 x 10(-6) to 2.5 x 10(-4) mol/L with a detection limit of 4.0 x 10(-7) mol/L. The apparent Michaelis-Menten constant was determined to be 2.198 mmol/L. To improve the analytical characteristics of the fabricated biosensor, the effects of applied potential and pH value on the steady-state current were studied. Under the optimized experimental conditions, the fabricated biosensor was found to have good analytical performance, reproducibility, and storage stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号