首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Kuz’menko  A. A. 《Nonlinear dynamics》2022,109(3):1763-1775

Synchronization of chaotic systems is considered to be a common engineering problem. However, the proposed laws of synchronization control do not always provide robustness toward the parametric perturbations. The purpose of this article is to show the use of synergy-cybernetic approach for the construction of robust law for Arneodo chaotic systems synchronization. As the main method of design of robust control, the method of design of control with forced sliding mode of the synergetic control theory is considered. To illustrate the effectiveness of the proposed law, in this article it is compared with the classical sliding mode control and adaptive backstepping. The distinctive features of suggested robust control law are the more good compensation of parametric perturbations (better performance indexes—the root-mean-square error (RMSE), average absolute value (AVG) of error) without designing perturbation observers, the ability to exclude the chattering effect, less energy consuming and a simpler analysis of the stability of a closed-loop system. The study of the proposed control law and the change of its parameters and the place of parametric perturbation’s application is carried out. It is possible to significantly reduce the synchronization error and RMSE, as well as AVG of error by reducing some parameters, but that leads to an increase in control signal amplitude. The place of application of parametric disturbances (slave or master system) has no effect on the RMSE and AVG of error. Offered approach will allow a new consideration for the design of robust control laws for chaotic systems, taking into account the ideas of directed self-organization and robust control. It can be used for synchronization other chaotic systems.

  相似文献   

2.
This paper presents the integral sliding mode control for fractional-order systems with input disturbance and mismatched uncertainties. For fractional-order systems with the fractional order α satisfying 0<α<1 and 1<α<2, two theorems are proposed to design the stable integral sliding mode surfaces by the LMI conditions and the properties of the Kronecker product, respectively. Moreover, the integral sliding mode control is designed to eliminate the reaching stage for enhancing the robustness of fractional-order systems. Two examples are given to verify the effectiveness of the proposed methods.  相似文献   

3.
We consider the control of mechanical systems based on sliding mode control techniques. Recently developed simplex control methods are shown to converge in a finite time when applied to nonlinear systems under bounded deterministic uncertainty. Applications are considered to the control of mechanical systems in which the control action is provided by monodirectional devices.  相似文献   

4.
Nonlinear Dynamics - In this study, a new fractional-order dynamic sliding mode control (FDSMC) for a class of nonlinear systems is presented. In FDSMC, an integrator is placed before the input...  相似文献   

5.
6.
Lin  Shuyi  Zhang  Weidong 《Nonlinear dynamics》2018,93(4):2273-2282
Nonlinear Dynamics - This paper presents a sliding mode control scheme for chaotic systems. Finite time stability of the system states is realized by implementing the proposed controller, which is...  相似文献   

7.
This paper presents an adaptive terminal sliding mode control method for anti-synchronization of uncertain chaotic systems. By fusion of the terminal sliding mode control and the adaptive control techniques, a robust controller is designed so that the states tracking error can reach the terminal sliding mode surface and converge to zero in a finite time. Finally, some simulation results are included to demonstrate the effectiveness and the feasibility of the proposed anti-synchronization scheme.  相似文献   

8.
This paper is concerned with the stabilization problem for a class of nonlinear systems. Using the global sliding mode control approach, a novel robust control law is established to make the state of system stable and to improve the robustness and the stability of system. A new reaching law is introduced to reduce the chattering. Finally, the method is applied to chaotic systems and an example of the chaotic system is given to illustrate the advantage of the proposed method.  相似文献   

9.
This paper presents some novel discussions on fully decentralized and semi-decentralized control of fractional-order large-scale nonlinear systems with two distinctive fractional derivative dynamics. First, two decentralized fractional-order sliding mode controllers with different sliding surfaces are designed. Stability of the closed-loop systems is attained under the assumption that the uncertainties and interconnections among the subsystems are bounded, and the upper bound is known. However, determining the interconnections and uncertainties bound in a large-scale system is troublesome. Therefore in the second step, two different fuzzy systems with adaptive tuning structures are utilized to approximate the interconnections and uncertainties. Since the fuzzy system uses the adjacent subsystem variables as its own input, this strategy is known as semi-decentralized fractional-order sliding mode control. For both fully decentralized and semi-decentralized control schemes, the stability of closed-loop systems has been analyzed depend on the sliding surface dynamics by integer-order or fractional-order stability theorems. Eventually, simulation results are presented to illustrate the effectiveness of the suggested robust controllers.  相似文献   

10.
Yan  Yan  Wang  Rui  Yu  Shuanghe  Wang  Chaoli  Li  Tieshan 《Nonlinear dynamics》2022,107(4):3543-3555
Nonlinear Dynamics - This paper is concerned with event-triggered sliding mode control (SMC) for uncertain mechanical systems subject to limited communication capacity. We consider the scenario...  相似文献   

11.
This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay control to estimate the lumped uncertainty. The proposed control enforces sliding without using the discontinuous control and without requiring the knowledge of uncertainties or their bounds. The overall stability of the system is proved. The effectiveness of the proposed strategy is verified for model following and robust performance, by simulation of an illustrative example and an application to inverted pendulum system.  相似文献   

12.
This paper deals with the adaptive terminal sliding mode control for nonlinear differential inclusion systems subjected to disturbance. The upper bound of the disturbance is unknown. First, the fast terminal sliding mode surface is established and sufficient condition for fast convergence is given. Then the adaptive sliding mode controller is designed to make the state of system arrive at the sliding mode in finite time. A numerical example is provided to show the effectiveness of the proposed method.  相似文献   

13.
Ren  Junchao  Sun  Jie  Fu  Jun 《Nonlinear dynamics》2021,103(1):865-882
Nonlinear Dynamics - This paper investigates the problem of finite-time event-triggered sliding mode control for one-sided Lipschitz nonlinear systems with uncertainties. The system is subjected to...  相似文献   

14.
Shang  Hui  Zong  Guangdeng 《Nonlinear dynamics》2020,100(3):2401-2413
Nonlinear Dynamics - The event-triggered sliding mode control problem is addressed for a class of networked switched systems subject to communication constraints. Not only the problem of network...  相似文献   

15.
The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme.  相似文献   

16.
He  Hangfeng  Gao  Xianwen  Qi  Wenhai 《Nonlinear dynamics》2018,93(4):2433-2444
Nonlinear Dynamics - This paper investigates the problem of observer-based sliding mode control for switched positive nonlinear systems with asynchronous switching. The mode of controller is...  相似文献   

17.
We present a robust algorithm to synchronize two different single-input/single-output (SISO) nonlinear systems connected in a master/slave scheme, where the relative degree of the master system (r m) is greater than or equal to the relative degree of the slave (r s). The sliding mode control technique is used to design the coupling signal. This discontinuous controller renders the closed-loop system robust with respect to matched bounded disturbances. The synchronization objective is to match the first r s normal coordinates. Depending on the characteristics of the involved systems, the closed loop system can display full or partial, identical or generalized synchronization. The performance of the proposed controlled synchronization is illustrated numerically and experimentally.  相似文献   

18.
19.
Liang  Ruipeng  Xiao  Zehui  Wu  Zhenyu  Tao  Jie  Wang  Xiaofeng 《Nonlinear dynamics》2022,108(2):911-939
Nonlinear Dynamics - In this paper, the motion of a smart rigid-flexible satellite considering large deflections for its flexible appendages in general planar motion is modeled. Also, the satellite...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号