首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the effects of varying the eccentricity between the gravity axis and the elastic axis on the level of energy harvested from a piezoaeroelastic energy harvester consisting of a pitching and plunging rigid airfoil supported by nonlinear springs. The normal form of the dynamics of the harvester near the Hopf bifurcation is used to determine the critical nonlinear coefficients of the springs and maximize the harvested power for different eccentricities. Two configurations are evaluated in terms of the power generated from limit cycle oscillations and a range of operating wind speeds. The impact of the load resistance on the harvested power is also assessed.  相似文献   

2.
In this paper, the effect of a cubic structural restoring force on the flutter characteristics of a two-dimensional airfoil placed in an incompressible flow is investigated. The aeroelastic equations of motion are written as a system of eight first-order ordinary differential equations. Given the initial values of plunge and pitch displacements and their velocities, the system of equations is integrated numerically using a fourth order Runge-Kutta scheme. Results for soft and hard springs are presented for a pitch degree-of-freedom nonlinearity. The study shows the dependence of the divergence flutter boundary on initial conditions for a soft spring. For a hard spring, the nonlinear flutter boundary is independent of initial conditions for the spring constants considered. The flutter speed is identical to that for a linear spring. Divergent flutter is not encountered, but instead limit-cycle oscillation occurs for velocities greater than the flutter speed. The behaviour of the airfoil is also analysed using analytical techniques developed for nonlinear dynamical systems. The Hopf bifurcation point is determined analytically and the amplitude of the limit-cycle oscillation in post-Hopf bifurcation for a hard spring is predicted using an asymptotic theory. The frequency of the limit-cycle oscillation is estimated from an approximate method. Comparisons with numerical simulations are carried out and the accuracy of the approximate method is discussed. The analysis can readily be extended to study limit-cycle oscillation of airfoils with nonlinear polynomial spring forces in both plunge and pitch degrees of freedom.  相似文献   

3.
This work investigates the influence of structural and aerodynamic nonlinearities on the dynamic behavior of a piezoaeroelastic system. The system is composed of a rigid airfoil supported by nonlinear torsional and flexural springs in the pitch and plunge motions, respectively, with a piezoelectric coupling attached to the plunge degree of freedom. The analysis shows that the effect of the electrical load resistance on the flutter speed is negligible in comparison to the effects of the linear spring coefficients. The effects of aerodynamic nonlinearities and nonlinear plunge and pitch spring coefficients on the system’s stability near the bifurcation are determined from the nonlinear normal form. This is useful to characterize the effects of different parameters on the system’s output and ensure that subcritical or “catastrophic” bifurcation does not take place. Numerical solutions of the coupled equations for two different configurations are then performed to determine the effects of varying the load resistance and the nonlinear spring coefficients on the limit-cycle oscillations (LCO) in the pitch and plunge motions, the voltage output and the harvested power.  相似文献   

4.
We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by a nonlinear torsional spring (freeplay) in the pitch degree of freedom and a linear flexural spring in the plunge degree of freedom. By attaching a piezoelectric material (PSI-5A4E) to the plunge degree of freedom, we can convert aeroelastic vibrations to electrical energy. The focus of this study is placed on the effects of the freeplay nonlinearity gap on the behavior of the harvester in terms of cut-in speed and level of harvested power. Although the freeplay nonlinearity may result in subcritical Hopf bifurcations (catastrophic for real aircrafts), harvesting energy at low wind speeds is beneficial for designing piezoaeroelastic systems. It is demonstrated that increasing the freeplay nonlinearity gap can decrease the cut-in speed through a subcritical instability and gives the possibility to harvest energy at low wind speeds. The results also demonstrate that an optimum value of the load resistance exists, at which the level of the harvested power is maximized.  相似文献   

5.
We perform an analytical and experimental investigation into the dynamics of an aeroelastic system consisting of a plunging and pitching rigid airfoil supported by a linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom. The experimental results show that the onset of flutter takes place at a speed smaller than the one predicted by a quasi-steady aerodynamic approximation. On the other hand, the unsteady representation of the aerodynamic loads accurately predicts the experimental value. The linear analysis details the difference in both formulation and provides an explanation for this difference. Nonlinear analysis is then performed to identify the nonlinear coefficients of the pitch spring. The normal form of the Hopf bifurcation is then derived to characterize the type of instability. It is demonstrated that the instability of the considered aeroelastic system is supercritical as observed in the experiments.  相似文献   

6.
The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.  相似文献   

7.
武世江  张继业  隋皓  殷中慧  胥奇 《力学学报》2021,53(9):2569-2581
针对轮对系统中的非线性动力学问题, 本文基于Hopf分岔代数判据得到考虑陀螺效应的轮对系统Hopf分岔点解析表达式, 即轮对系统蛇形失稳的线性临界速度解析表达式. 基于分岔理论得到轮对系统的第一、第二Lyapunov系数表达式, 并结合打靶法分别得到不同纵向刚度下, 考虑陀螺效应与不考虑陀螺效应的轮对系统分岔图. 通过对比有无陀螺效应的轮对系统分岔图发现, 在同一纵向刚度下, 考虑陀螺效应的轮对系统线性临界速度和非线性临界速度均大于不考虑陀螺效应的轮对系统, 即陀螺效应可以提高轮对系统的运动稳定性. 基于Bautin分岔理论, 以纵向刚度和纵向速度作为参数, 分别得到考虑陀螺效应和不考虑陀螺效应的轮对系统, 从亚临界Hopf分岔到超临界Hopf分岔, 再从超临界Hopf分岔到亚临界Hopf分岔的迁移机理拓扑图. 通过对比有、无陀螺效应的轮对系统Bautin分岔拓扑图发现, 陀螺效应将改变轮对系统的退化Hopf分岔点, 但对于轮对系统Bautin分岔拓扑图的影响不大.   相似文献   

8.
High-frequency limit-cycle oscillations of an airfoil at low Reynolds number are studied numerically. This regime is characterized by large apparent-mass effects and intermittent shedding of leading-edge vortices. Under these conditions, leading-edge vortex shedding has been shown to result in favorable consequences such as high lift and efficiencies in propulsion/power extraction, thus motivating this study. The aerodynamic model used in the aeroelastic framework is a potential-flow-based discrete-vortex method, augmented with intermittent leading-edge vortex shedding based on a leading-edge suction parameter reaching a critical value. This model has been validated extensively in the regime under consideration and is computationally cheap in comparison with Navier–Stokes solvers. The structural model used has degrees of freedom in pitch and plunge, and allows for large amplitudes and cubic stiffening. The aeroelastic framework developed in this paper is employed to undertake parametric studies which evaluate the impact of different types of nonlinearity. Structural configurations with pitch-to-plunge frequency ratios close to unity are considered, where the flutter speeds are lowest (ideal for power generation) and reduced frequencies are highest. The range of reduced frequencies studied is two to three times higher than most airfoil studies, a virtually unexplored regime. Aerodynamic nonlinearity resulting from intermittent leading-edge vortex shedding always causes a supercritical Hopf bifurcation, where limit-cycle oscillations occur at freestream velocities greater than the linear flutter speed. The variations in amplitude and frequency of limit-cycle oscillations as functions of aerodynamic and structural parameters are presented through the parametric studies. The excellent accuracy/cost balance offered by the methodology presented in this paper suggests that it could be successfully employed to investigate optimum setups for power harvesting in the low-Reynolds-number regime.  相似文献   

9.
Analytical and numerical analyses of the nonlinear response of a three-degree-of-freedom nonlinear aeroelastic system are performed. Particularly, the effects of concentrated structural nonlinearities on the different motions are determined. The concentrated nonlinearities are introduced in the pitch, plunge, and flap springs by adding cubic stiffness in each of them. Quasi-steady approximation and the Duhamel formulation are used to model the aerodynamic loads. Using the quasi-steady approach, we derive the normal form of the Hopf bifurcation associated with the system??s instability. Using the nonlinear form, three configurations including supercritical and subcritical aeroelastic systems are defined and analyzed numerically. The characteristics of these different configurations in terms of stability and motions are evaluated. The usefulness of the two aerodynamic formulations in the prediction of the different motions beyond the bifurcation is discussed.  相似文献   

10.
We investigate the effectiveness of linear and nonlinear time-delay feedback controls to suppress high amplitude oscillations of an elastically mounted square cylinder undergoing galloping oscillations. A representative model that couples the transverse displacement and the aerodynamic force is used. The quasi-steady approximation is used to model the galloping force. A linear analysis is performed to investigate the effect of linear time-delay controls on the onset speed of galloping and natural frequencies. It is demonstrated that a linear time-delay control can be used to delay the onset speed of galloping. The normal form of the Hopf bifurcation is then derived to characterize the type of the instability (supercritical or subcritical) and to determine the effects of the linear and nonlinear time-delay parameters on their outputs near the bifurcation. The results show that the nonlinear time-delay control can be efficiently implemented to significantly reduce the galloping amplitude and suppress any dangerous behavior by converting any subcritical Hopf bifurcation into a supercritical one.  相似文献   

11.
In this paper, an airfoil-based piezoaeroelastic energy harvesting system is proposed with an additional supporting device to harvest the mechanical energy from the leadlag motion. A dimensionless dynamic model is built considering the large-effective-angle-of-attack vibrations causing (1) the nonlinear coupling between the pitch–plunge–leadlag motions, (2) the inertia nonlinearity, and (3) the aerodynamic nonlinearity modeled by the ONERA dynamic stall model. Cubic hardening stiffness is introduced in the pitch degree of freedom for persistent vibrations with acceptable amplitude beyond the flutter boundary. The nonlinear aeroelastic response and the average power output are numerically studied. Limit cycle oscillations are observed and, as the flow velocity exceeds a secondary critical speed, the system experiences complex vibrations. The power output from the leadlag motion is smaller than that from the plunge motion, whereas the gap is narrowed with increasing flow velocity. Case studies are performed toward the effects of several dimensionless system parameters, including the nonlinear torsional stiffness, airfoil mass eccentricity, airfoil radius of gyration, mass of the supporting devices, and load resistances in the external circuits. The optimal parameter values for the power outputs from the plunge and leadlag motions are, respectively, obtained. Beyond the secondary critical speed, it is shown that the variations of the power outputs with those parameters become irregular with fluctuations and multiple local maximums. The bifurcation analysis shows the mutual transitions between the limit cycle oscillations, multi-periodic vibrations, and possible chaos. The influences of these complex vibrations on the power outputs are discussed.  相似文献   

12.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

13.
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.  相似文献   

14.
Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations. Taking air speed and the linear part of pitching stiffness as the parameters, the analytic solutions of the critical boundaries of pitchfork bifurcations and Hopf bifurcations are obtained in 2 dimensional parameter plane. The stabilities of the equilibrium points and the limit cycles in different regions of 2 dimensional parameter plane are analyzed. By means of harmonic balance method, the approximate critical boundaries of 2-multiple semi-stable limit cycle bifurcations are obtained, and the bifurcation points of supercritical or subcritical Hopf bifurcation are found. Some numerical simulation results are given.  相似文献   

15.
Two vibrating bubbles submerged in a fluid influence each others’ dynamics via sound waves in the fluid. Due to finite sound speed, there is a delay between one bubble’s oscillation and the other’s. This scenario is treated in the context of coupled nonlinear oscillators with a delay coupling term. It has previously been shown that with sufficient time delay, a supercritical Hopf bifurcation may occur for motions in which the two bubbles are in phase. In this work, we further examine the bifurcation structure of the coupled microbubble equations, including analyzing the sequence of Hopf bifurcations that occur as the time delay increases, as well as the stability of this motion for initial conditions which lie off the in-phase manifold. We show that in fact the synchronized, oscillating state resulting from a supercritical Hopf is attracting for such general initial conditions.  相似文献   

16.
Peng Li  Yiren Yang  Li Lu 《Meccanica》2014,49(12):2797-2815
This paper is aimed at presenting the nonlinear flutter peculiarities of a cantilevered plate with motion-limiting constraints in subsonic flow. A non-smooth free-play structural nonlinearity is considered to model the motion constraints. The governing nonlinear partial differential equation is discretized in space and time domains by using the Galerkin method. The equilibrium points and their stabilities are presented based on qualitative analysis and numerical studies. The system loses its stability by flutter and undergoes the limit cycle oscillations (LCOs) due to the nonlinearity. A heuristic analysis scheme based on the equivalent linearization method is applied to theoretical analysis of the LCOs. The Hopf and two-multiple semi-stable limit cycle bifurcation bifurcations are supercritical or subcritical, which is dependent on the location of the motion constraints. For some special cases the bifurcations are, interestingly, both supercritical and subcritical. The influence of varying parameters on the dynamics is discussed in detail. The results predicted by the analysis scheme are in good agreement with the numerical ones.  相似文献   

17.
The modal interaction which leads to Hamiltonian Hopf bifurcation is studied for a nonlinear rotating bladed-disk system. The model, which is discussed in the paper, is a Jeffcott rotor carrying a number of planar blades which bend in the plane of the motion. The rigid rotating disk is supported on nonlinear bearings. It is supposed that this dynamical system is a Hamiltonian system which is perturbed by small dissipative and nonlinear forces. Krein’s theorem is employed for obtaining a stability criterion. The nonlinear eigenvalue equations on the stability boundary are turned into ordinary differential equations (ODEs) by differentiating them over the rotating speed. By solving these ODEs, the eigenmodes and the eigenvalues on the stability boundary are obtained. The bifurcation analysis is performed by applying multiple scales method around the boundary. The rotor nonlinear behavior and damping effects are studied for different conditions on the rotating speed and nonlinearity type by the bifurcation equation. It is shown that the damping distribution between the blades and bearings may shift the unstable mode. Depending on the nonlinearity type, subcritical and supercritical Hopf bifurcation are possible.  相似文献   

18.
An analytical investigation of Hopf bifurcation and hunting behavior of a rail wheelset with nonlinear primary yaw dampers and wheel-rail contact forces is presented. This study is intended to complement earlier studies by True et al., where they investigated the nonlinearities stemming from creep-creep force saturation and nonlinear contacts between a realistic wheel and rail profile. The results indicate that the nonlinearities in the primary suspension and flange contact contribute significantly to the hunting behavior. Both the critical speed and the nature of bifurcation are affected by the nonlinear elements. Further, the results show that in some cases, the critical hunting speed from the nonlinear analysis is less than the critical speed from a linear analysis. This indicates that a linear analysis could predict operational speeds that in actuality include hunting.  相似文献   

19.
Liu  Liping  Dowell  Earl H. 《Nonlinear dynamics》2004,37(1):31-49
The nonlinear dynamical response of a two-degree-of-freedom aeroelastic airfoil motion with cubic restoring forces is investigated. A secondary bifurcation after the primary Hopf (flutter) bifurcation is detected for a cubic hard spring in the pitch degree-of-freedom. Furthermore, there is a hysteresis in the secondary bifurcation: starting from different initial conditions the motion may jump from one limit cycle to another at different fluid flow velocities. A high-order harmonic balance method is employed to investigate the possible bifurcation branches. Furthermore, a numerical time simulation procedure is used to confirm the stable and unstable bifurcation branches.  相似文献   

20.
In this paper, the nonlinear dynamics of a pipe imperfectly supported at the upstream end and free at the other and conveying fluid is investigated. The imperfect support is modelled via cubic translational and rotational springs. The equation of motion is obtained via Hamilton’s principle for an open system, and the Galerkin method is used for discretizing the resulting partial differential equation. The dynamics of a system with either strong rotational or strong translational stiffness is examined in details. Numerical results show that similarly to a cantilevered pipe, the system undergoes a supercritical Hopf bifurcation leading to period-1 limit cycle oscillations. The Hopf bifurcation may, however, occur at a much lower flow velocity compared to the perfect system. At higher flow velocities, quasi-periodic and chaotic-like motions may be observed. The amplitude of transverse displacement is generally much higher than that for a cantilevered pipe, mainly due to large-amplitude rigid-body motion. In addition, effects of the mass ratio, internal dissipation, hardening- or softening-type nonlinearity, as well as concentrated- or distributed-type nonlinearity on the dynamics of the system are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号