首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an adaptive fuzzy robust H controller is proposed for formation control of a swarm of differential driven vehicles with nonholonomic dynamic models. Artificial potential functions are used to design the formation control input for kinematic model of the robots and matrix manipulations are used to transform the nonholonomic model of each differentially driven vehicle into equivalent holonomic one. The main advantage of the proposed controller is the robustness to input nonlinearity, external disturbances, model uncertainties, and measurement noises, in a formation control of a nonholonomic robotic swarm. Moreover, robust stability proof is given using Lyapunov functions. Finally, simulation results are demonstrated for a swarm formation problem of a group of six unicycles, illustrating the effective attenuation of approximation error and external disturbances, even in the case of robot failure.  相似文献   

2.
This paper presents a novel discrete adaptive fuzzy controller for electrically driven robot manipulators. It addresses how to overcome the nonlinearity, uncertainties, discretizing error and approximation error of the fuzzy system for asymptotic tracking control of robotic manipulators. The proposed controller is model-free in the form of discrete Mamdani fuzzy controller. The parameters of fuzzy controller are adaptively tuned using an adaptive mechanism derived by stability analysis. A robust control term is used to compensate the approximation error of the fuzzy system for asymptotic tracking of a desired trajectory. The controller is robust against all uncertainties associated with the robot manipulator and actuators. It is easy to implement since it requires only the joint position feedback. Compared with fuzzy controllers which employ all states to guarantee stability, the proposed controller is very simpler. Stability analysis and simulation results show its efficiency in the tracking control.  相似文献   

3.
In this paper, a novel adaptive interval type-2 fuzzy sliding mode control (AIT2FSMC) methodology is proposed based on the integration of sliding mode control and adaptive interval type-2 fuzzy control for chaotic system. The AIT2FSMC system is comprised of a fuzzy control design and a hitting control design. In the fuzzy control design, an interval type-2 fuzzy controller is designed to mimic a feedback linearization (FL) control law. In the hitting control design, a hitting controller is designed to compensate the approximation error between the FL control law and the interval type-2 fuzzy controller. The parameters of the interval type-2 fuzzy controller, as well as the uncertainty bound of the approximation error, are tuned adaptively. The adaptive laws are derived in the sense of Lyapunov stability theorem, thus the stability of the system can be guaranteed. The proposed control system compared to adaptive fuzzy sliding mode control (AFSMC). Simulation results show that the proposed control systems can achieve favorable performance and robust with respect to system uncertainties and external disturbances.  相似文献   

4.
This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

5.
This paper proposes a robust adaptive controller design method for synchronization of a complex dynamical network with uncertainty and disturbance. A fuzzy disturbance observer is used to estimate the overall disturbances without any prior knowledge about them. The proposed control method globally asymptotically synchronizes the network using adaptation laws obtained by using Lyapunov stability theory. The proposed method is applied to two chaotic systems and the results show the effectiveness of the approach.  相似文献   

6.
In this paper, we propose a new application of the adaptive critic methodology for the feedback control of wheeled mobile robots, based on a critic signal provided by a neural network (NN). The adaptive critic architecture uses a high-level supervisory NN adaptive critic element (ACE), to generate the reinforcement signal to optimise the associative search element (ASE), which is applied to approximate the non-linear functions of the mobile robot. The proposed tracking controller is derived from Lyapunov stability theory and can guarantee tracking performance and stability. A series of computer simulations have been used to emulate the performance of the proposed solution for a wheeled mobile robot.  相似文献   

7.
In this paper, a fuzzy adaptive output feedback control approach is developed for a class of SISO strict-feedback nonlinear systems with unmeasured states, unmodeled dynamics, and dynamical disturbances. In the backstepping recursive design, fuzzy logic systems are used to approximate the unknown nonlinear functions, a fuzzy adaptive high-gain observer is designed to estimate the unmeasured states; a dynamic signal is incorporated into the control scheme to dominate the dynamic uncertainties. Using the states estimates and combining the backstepping design technique, a fuzzy adaptive output feedback control is constructed recursively. It is proved that the proposed fuzzy adaptive output feedback control scheme can guarantee the all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SUUB), and the observer and tracking error converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated via an example.  相似文献   

8.
In this paper, an adaptive fuzzy output-feedback control approach is proposed for a class of uncertain nonlinear systems with unknown nonlinear functions, unmodeled dynamics, and without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. To solve the problem of unmodeled dynamics, the dynamical signal combined with changing supply function is incorporated into the backstepping recursive design technique. Under the framework of the backstepping control design technique and incorporated by the predefined performance technique, a new robust adaptive fuzzy output feedback control scheme is constructed. It is shown that all the signals of the resulting closed-loop system are bounded, and the system output remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example and comparison with the previous control methods are provided to show the effectiveness of the proposed control approach.  相似文献   

9.
A low-complexity design problem of tracking scheme for uncertain nonholonomic mobile robots is investigated in the presence of unknown time-varying input delay. It is assumed that nonlinearities and parameters of robots and their bounds are unknown. Based on a nonlinear error transformation, a tracking control scheme ensuring preassigned bounds of overshoot, convergence rate, and steady-state values of a tracking error is firstly presented in the absence of input delay, without using any adaptive and function approximation mechanism to estimate unknown nonlinearities and model parameters and computing repeated time derivatives of certain signals. Then, we develop a low-complexity tracking scheme to deal with unknown time-varying input delay of mobile robots where some auxiliary signals and design conditions are derived for the design and stability analysis of the proposed tracking scheme. The boundedness of all signals in the closed-loop system and the guarantee of tracking performance with preassigned bounds are established through Lyapunov stability analysis. The validity of the proposed theoretical result is shown by a simulation example.  相似文献   

10.
In this paper, a new adaptive fuzzy sliding mode (AFSM) observer is proposed which can be used for a class of MIMO nonlinear systems. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. In this method, a fuzzy system is designed to estimate the nonlinear behavior of the observer. The output of fuzzy rules are tuned adaptively, based on the observer error. The output connection matrix is used to combine the observer errors of individual subsystems. A robust term, which is designed based on the sliding mode theory, is added to the observer to compensate the fuzzy estimation error. The estimation error bound is adjusted by an adaptive law. The main advantage of the proposed observer is that, unlike many of the previous works, the measured outputs is not limited to the first entries of a canonical-form state vector. The proposed observer estimates the closed-loop state tracking error asymptotically, provided that the output gain matrix includes Hurwitz coefficients. The chattering is eliminated by using boundary layers around the sliding surfaces and the observer convergence is proved using a Lyapunov-based approach. The proposed method is applied on a real multilink robot manipulator. The performance of the observer shows its effectiveness in the real world.  相似文献   

11.
This paper presents a novel implementation of an adaptive robust second-order sliding mode control (ARSSMC) on a mobile robot with four Mecanum wheels. Each wheel of the mobile robot is actuated by separate motors. It is the first time that higher-order sliding mode control method is implemented for the trajectory tracking control of Mecanum-wheeled mobile robot. Kinematic and dynamic modeling of the robot is done to derive an equation of motion in the presence of friction, external force disturbance, and uncertainties. In order to make the system robust, second-order sliding mode control law is derived. Further, adaptive laws are defined for adaptive estimation of switching gains. To check the tracking performance of the proposed controller, simulations are performed and comparisons of the obtained results are made with adaptive robust sliding mode control (ARSMC) and PID controller. In addition, a new and low-cost experimental approach is proposed to implement the proposed control law on a real robot. Experimental results prove that without compromising on the dynamics of the robot real-time implementation is possible in less computational time. The simulation and experimental results obtained confirms the superiority of ARSSMC over ARSMC and PID controller in terms of integral square error (ISE), integral absolute error (IAE), and integral time-weighted absolute error (ITAE), control energy and total variance (TV).  相似文献   

12.
Trajectory tracking of a mobile manipulator is a challenging research because of its complex nonlinearity and dynamics. This paper presents an adaptive control strategy for trajectory tracking of a mobile manipulator system that consists of a wheeled platform and a modular manipulator. When a robot system moves in the presence of sliding, it is difficult to accurately track its trajectory by applying the backstepping approach, even if we employ a non-ideal kinematic model. To address this problem, we propose using a combination of adaptive fuzzy control and backstepping approach based on a dynamic model. The proposed control scheme considers the dynamic interaction between the platform and manipulator. To accurately track the trajectory, we propose a fuzzy compensator in order to compensate for modeling uncertainties such as friction and external disturbances. Moreover, to reduce approximation errors and ensure system stability, we include a robust term to the adaptive control law. Simulation results obtained by comparing several cases reveal the presence of the dynamic interaction and confirm the robustness of the designed controller. Finally, we demonstrate the effectiveness and merits of the proposed control strategy to counteract the modeling uncertainties and accurately track the trajectory.  相似文献   

13.
In this paper, a multi-robot formation control is designed based on Sliding Mode Control (SMC) technique. Although the structure and sensing capabilities of each robot are very simple, complex formation behaviors emerge from cooperation among them. We use an adaptive fuzzy approximator, in which unknown dynamic of robots and time delays are approximated precisely. Then it is shown that autonomous robots are able to form geometrical formations, even in the case of time-delayed dynamics, and presence of obstacles. Various simulation results and comparisons with existing works are provided that demonstrate performing efficient formation of unknown robots, with robust characteristics.  相似文献   

14.
This paper presents a novel robust decentralized control of electrically driven robot manipulators by adaptive fuzzy estimation and compensation of uncertainty. The proposed control employs voltage control strategy, which is simpler and more efficient than the conventional strategy, the so-called torque control strategy, due to being free from manipulator dynamics. It is verified that the proposed adaptive fuzzy system can model the uncertainty as a nonlinear function of the joint position error and its time derivative. The adaptive fuzzy system has an advantage that does not employ all system states to estimate the uncertainty. The stability analysis, performance evaluation, and simulation results are presented to verify the effectiveness of the method. A?comparison between the proposed Nonlinear Adaptive Fuzzy Control (NAFC) and a Robust Nonlinear Control (RNC) is presented. Both control approaches are robust with a very good tracking performance. The NAFC is superior to the RNC in the face of smooth uncertainty. In contrast, the RNC is superior to the NAFC in the face of sudden changes in uncertainty. The case study is an articulated manipulator driven by permanent magnet dc motors.  相似文献   

15.
In this paper, an adaptive fuzzy output feedback control approach is developed for a class of SISO uncertain nonlinear strict-feedback systems. The considered nonlinear systems contain unknown nonlinear functions, unknown time-varying delays and unmeasured states. The fuzzy logic systems are first used to approximate the unknown nonlinear functions, and then a high-gain filter is designed to estimate the unmeasured states. Combining the backstepping recursive design technique and adaptive fuzzy control design, an adaptive fuzzy output feedback backstepping control method is developed. It is proved that the proposed adaptive fuzzy control approach can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and both the observer error and tracking error converge to a small neighborhood of the origin. Two key advantages of our scheme are that (i) the high-gain filter is designed to estimate unmeasured states of time-delay nonlinear system, and (ii) the virtual control gains are functions. A simulation is included to illustrate the effectiveness of the proposed approach.  相似文献   

16.
In this paper, a novel trajectory tracking controller is proposed for mobile robots with unknown orientation angle by employing the orientation-error observer (OEO). In order to overcome the local stability resulted from linearization design methods, an asymptotically stable controller is designed using Lyapunov’s direct method. This method breaks down nonlinear systems into low-dimensional systems and simplifies the controller design using virtual auxiliary error function and partial Lyapunov functions. A state-feedback controller for the nonlinear error dynamics of the mobile robot is combined with an observer that estimates the orientation-error based on available trajectory information and measurement of the position coordinates. The stability of the system is easily proved via the Lyapunov theory. Abundant simulation and experiment results validate the effectiveness and superiority of the proposed control method.  相似文献   

17.
In this paper, a multi-input multi-output Takagi–Sugeno (T–S) fuzzy model is proposed to represent the nonlinear model of micro-electro mechanical systems (MEMS) gyroscope and improve the tracking and compensation performance. A robust adaptive sliding mode control with on-line identification for the upper bounds of external disturbances and an adaptive estimator for the model uncertainty parameters are proposed in the Lyapunov framework. The adaptive algorithm of model uncertainty parameters could compensate the error between the optimal T–S model and the designed T–S model, and decrease the chattering of the sliding surface. Based on Lyapunov methods, these adaptive laws can guarantee that the system is asymptotically stable. For the purpose of comparison, the designed controller is also implemented on the nonlinear model of MEMS gyroscope. Numerical simulations are investigated to verify the effectiveness of the proposed control scheme on the T–S model and the nonlinear model.  相似文献   

18.
This paper is concerned with the problem of design and implementation of a robust adaptive control strategy for electrically driven robots while considering to the constraints on the actuator voltage input. The proposed approach provides a flexible design framework and stable to deal with robustness compared with many other adaptive controllers, such as halting/slowing adaption techniques and adaptively adjusting command signal, which are proposed for robotic applications. The control design procedure is based on a new form of universal approximation theory and using Stone–Weierstrass theorem, to avoid saturation besides being robust against both structured and unstructured uncertainties associated with external disturbances and actuated manipulator dynamics. Moreover, the proposed approach eliminates problems arising from classic adaptive feedforward control scheme. The analytical studies as well as experimental results produced using MATLAB/SIMULINK external mode control on a two degree of freedom electrically driven robot demonstrate high performance of the proposed control schemes.  相似文献   

19.
In this paper, a robust adaptive intelligent sliding model control (RAISMC) scheme for a class of uncertain chaotic systems with unknown time-delay is proposed. A sliding surface dynamic is appropriately constructed to guarantee the reachability of the specified sliding surface. Within this scheme, neuro-fuzzy network (NFN) is utilized to approximate the unknown continuous function. The robust controller is an adaptive controller used to dispel the unknown uncertainty and approximation errors. The adaptive parameters of the control system are tuned on-line by the derived adaptive laws based on a Lyapunov stability analysis. Using appropriate Lyapunov–Krasovskii (L–K) functional in the Lyapunov function candidate, the uncertainty caused by unknown time delay is compensated and the global asymptotic stability of the error dynamics system in the specified switching surface is accomplished. Finally, the proposed RAISMC system is applied to control a Hopfield neural network, Cellular neural networks, Rössler system, and to achieve synchronization between the Chen system with two time delays with Rössler system without time delay. The results are representative of outperformance of the proposed method in all cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号