首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
基于Allan方差解耦自适应滤波的旋转SINS精对准方法   总被引:1,自引:0,他引:1  
对旋转式SINS精对准方法进行了研究,由于转位机构转动干扰以及惯性器件误差不确定性带来的影响,旋转式SINS状态方程和量测方程噪声方差参数难以确定,进而导致初始对准精度降低,针对这个问题引入自适应Kalman滤波技术。Sage-Husa是一种常用的自适应滤波算法,但是存在噪声参数强耦合缺陷。通过研究Allan方差与量测噪声方差之间的关系,利用Allan方差滤波器具有带通滤波的特点,独立计算量测噪声协方差阵R_k,该方法能够有效克服Sage-Husa滤波耦合问题,相比其它改进方法具有简单易实现等特点。对该研究进行了仿真实验与实际系统验证实验,结果表明:对于中等精度光纤陀螺单轴旋转SINS,自适应Kalman滤波算法航向角对准精度比标准Kalman滤波算法精度要高0.6’左右,且在误差估计过程中,自适应Kalman滤波器能够更好地抑制外界干扰误差的影响,是一种较好的精对准方法。  相似文献   

2.
Networks of coupled dynamical systems provide a powerful way to model systems with enormously complex dynamics, such as the human brain. Control of synchronization in such networked systems has far-reaching applications in many domains, including engineering and medicine. In this paper, we formulate the synchronization control in dynamical systems as an optimization problem and present a multi-objective genetic programming-based approach to infer optimal control functions that drive the system from a synchronized to a non-synchronized state and vice versa. The genetic programming-based controller allows learning optimal control functions in an interpretable symbolic form. The effectiveness of the proposed approach is demonstrated in controlling synchronization in coupled oscillator systems linked in networks of increasing order complexity, ranging from a simple coupled oscillator system to a hierarchical network of coupled oscillators. The results show that the proposed method can learn highly effective and interpretable control functions for such systems.  相似文献   

3.
The filtering problem is among the fundamental issues in control and signal processing. Several approaches such as H 2 optimal filtering and H ?? optimal filtering have been developed to address this issue. While the optimal H 2 filtering problem has been extensively studied in the past for linear systems, to the best of our knowledge, it has not been studied for bilinear systems. This is indeed surprising, since bilinear systems are important class of nonlinear systems with well-established theories and applications in various fields. The problem of H 2 optimal filtering for both discrete-time and continuous bilinear systems is addressed in this paper. The filter design problem is formulated in the optimization framework. The problem for the discrete-time case is expressed in terms of linear matrix inequalities which can be efficiently solved. The results are used for the optimal filtering of a bilinear model of an electro-hydraulic drive.  相似文献   

4.
An optimal bounded control strategy for smart structure systems as controlled Hamiltonian systems with random excitations and noised observations is proposed. The basic dynamic equations for a smart structure system with smart sensors and actuators are firstly given. The nonlinear stochastic control system with noised observations is then obtained from the simplified smart structure system, and the system is expressed by generalized Hamiltonian equations with control, random excitation and dissipative forces. The optimal control problem for nonlinear stochastic systems with noised observations includes two parts: optimal state estimation and optimal response control based on estimated states, which are coupled each other. The probability density of optimally estimated systems has generally infinite dimensions based on the separation theorem. The proposed optimal control strategy gives an approximate separate solution. First, the optimally estimated system state is determined by the observations based on the extended Kalman filter, and the estimated nonlinear system with controls and stochastic excitations is obtained which has finite-dimensional probability density. Second, the dynamical programming equation for the estimated system is determined based on the stochastic dynamical programming principle. The control boundedness due to actuator saturation is considered, and the optimal bounded control law is obtained by the programming equation with the bounded control constraint. The optimal control depends on the estimated system state which is determined by noised observations. The proposed optimal bounded control strategy is finally applied to a single-degree-of-freedom nonlinear stochastic system with control and noised observation. The remarkable vibration control effectiveness is illustrated with numerical results. Thus the proposed optimal bounded control strategy is promising for application to nonlinear stochastic smart structure systems with noised observations.  相似文献   

5.
Different from the inverse problem put forward by R.E.Kalman, another kind ofinverse problem of linear optimal control is proposed and discussed in[1] as follows:Givenan asymptotically stable linear constant system and a nonnegative quadratic performanceindex, when can a state-feedback be separated from the stable system so that this state-feedback control law is optimal for the given index? In this paper this problem is extended.Similar conclusions are obtained for linear discrete systems and linear time-variablesystems. According to these conclusions we can say that the correspondence between theasymptotically stable system and the optimal feedback system is the inherent character ofall kinds of linear systems.  相似文献   

6.
A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.  相似文献   

7.
Different from the inverse problem put forward by R.E.Kalman, another kind of inverse problem of linear optimal control is proposed and discussed in [1] as follows: Given an asymptotically stable linear constant system and a nonnegative quadratic performance index, when can a state-feedback be separated from the stable system so that this state-feedback control law is optimal for the given index? In this paper this problem is extended. Similar conclusions are obtained for linear discrete systems and linear time-variable systems. According to these conclusions we can say that the correspondence between the asymptotically stable system and the optimal feedback system is the inherent character of all kinds of linear systems.  相似文献   

8.
In this paper, the synchronization problem and its application in secret communication are investigated for two fractional-order chaotic systems with unequal orders, different structures, parameter uncertainty and bounded external disturbance. On the basis of matrix theory, properties of fractional calculus and adaptive control theory, we design a feedback controller for realizing the synchronization. In addition, in order to make it better apply to secret communication, we design an optimal controller based on optimal control theory. In the meantime, we propose an improved quantum particle swarm optimization (QPSO) algorithm by introducing an interval estimation mechanism into QPSO algorithm. Further, we make use of QPSO algorithm with interval estimation to optimize the proposed controller according to some performance indicator. Finally, by comparison, numerical simulations show that the controller not only can achieve the synchronization and secret communization well, but also can estimate the unknown parameters of the systems and bounds of external disturbance, which verify the effectiveness and applicability of the proposed control scheme.  相似文献   

9.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

10.
Gexia Wang 《Nonlinear dynamics》2011,63(1-2):277-283
This paper offers a new control strategy for discrete-time chaos synchronization where the drive system and the response system are coupled via a limited capacity communication channel (LCCC for short). One simple condition is presented to ensure synchronization between the two chaotic systems coupled by a LCCC. Based on this condition, an explicit coder–decoder pair for the coding algorithm is designed and the synchronization error between the two chaotic systems decays to zero exponentially based on this coding algorithm. Finally, the proposed control strategy is applied to the well-known H\′{e}non system, and numerical simulations illustrate the validity of the obtained result.  相似文献   

11.
A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.  相似文献   

12.
This paper addresses the reliable synchronization problem between two non-identical chaotic fractional order systems. In this work, we present an adaptive feedback control scheme for the synchronization of two coupled chaotic fractional order systems with different fractional orders. Based on the stability results of linear fractional order systems and Laplace transform theory, using the master-slave synchronization scheme, sufficient conditions for chaos synchronization are derived. The designed controller ensures that fractional order chaotic oscillators that have non-identical fractional orders can be synchronized with suitable feedback controller applied to the response system. Numerical simulations are performed to assess the performance of the proposed adaptive controller in synchronizing chaotic systems.  相似文献   

13.
A stochastic minimax semi-active control strategy for multi-degrees-of-freedom (MDOF) strongly nonlinear systems under combined harmonic and wide-band noise excitations is proposed. First, a stochastic averaging procedure is introduced for controlled uncertain strongly nonlinear systems using generalized harmonic functions and the control forces produced by Magneto-rheological (MR) dampers are split into the passive part and the active part. Then, a worst-case optimal control strategy is derived by solving a stochastic differential game problem. The worst-case disturbances and the optimal semi-active controls are obtained by solving the Hamilton–Jacobi–Isaacs (HJI) equations with the constraints of disturbance bounds and MR damper dynamics. Finally, the responses of optimally controlled MDOF nonlinear systems are predicted by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the fully averaged Itô equations. Two examples are worked out in detail to illustrate the proposed control strategy. The effectiveness of the proposed control strategy is verified by using the results from Monte Carlo simulation.  相似文献   

14.
为了解决实际工程中微机械惯性测量单元加速度计数据存在有色噪声导致计算的姿态角波动异常的问题,提出一种基于有色噪声的改进卡尔曼滤波方法。通过对有色噪声的特点进行分析,建立了针对有色噪声的状态预测协方差公式、卡尔曼滤波增益公式、系统状态与动态有色噪声的协方差公式、测量值与观测有色噪声的协方差公式,推导出处理有色噪声的卡尔曼滤波公式。仿真试验表明,改进的卡尔曼滤波方法能有效解决有色噪声导致的姿态角波动异常问题,证明了基于白噪声的卡尔曼滤波是基于有色噪声卡尔曼滤波的特例。  相似文献   

15.
This paper addresses the problem of optimization of the synchronization of a chaotic modified Rayleigh system. We first introduce a four-dimensional autonomous chaotic system which is obtained by the modification of a two-dimensional Rayleigh system. Some basic dynamical properties and behaviors of this system are investigated. An appropriate electronic circuit (analog simulator) is proposed for the investigation of the dynamical behavior of the proposed system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. Furthermore, we propose an optimal robust adaptive feedback which accomplishes the synchronization of two modified Rayleigh systems using the controllability functions method. The advantage of the proposed scheme is that it takes into account the energy wasted by feedback coupling and the closed loop performance on synchronization. Also, a finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master–slave controller system is also presented to show the feasibility of the proposed scheme.  相似文献   

16.
孙芳锦  徐中豪  张敏 《应用力学学报》2020,(2):846-850,I0027
针对强耦合方法求解风与柔性结构流固耦合作用时,大量计算资源都耗费在对强耦合方程求解中这一弊端,本文研究了强耦合方程的预处理求解方法。在风与柔性结构流固耦合作用的强耦合整体方程的基础上,将时空离散和线性化后的类似结构方程看成是鞍点问题,首先推导得到了类似结构方程的预处理矩阵;再基于此推导出了强耦合整体方程的预处理矩阵。首先采用预处理方法对经典二维流固耦合问题进行了计算,验证了提出的预处理矩阵的正确性;然后对风与三维膜结构的流固耦合作用进行了分析,评估了所提出预处理方法的相关计算参数。计算结果表明,所提出的预处理方法可使强耦合整体方程的求解在计算精度和计算效率上都得到较大提升,证明本文提出的预处理方法适用于风与柔性结构的流固耦合分析。  相似文献   

17.
连续时间系统的混沌同步   总被引:2,自引:0,他引:2  
本文讨论混沌连续时间系统的完全同步问题,提出一个构造混沌同步系统的新方法。这个方法基于线性系统的稳定性分析准则。通过对系统线性项与非线性项的适当分离,当系统的雅可比矩阵的所有特征值都具有负实部时,同步误差e(t)的线性系统是渐进稳定的,即可实现新系统和原系统的完全同步。新方法不需计算条件Lyapunov指数以作为判定同步的条件,因而比通用方法更为简单有效。新方法适用于自治或非自治系统,尤其适用于具有多于两个正Lyapunov指数的超混沌系统。甚至当初始同步误差极大时,也能实现理想的混沌同步。以Lorenz系统,耦合Duffing振子系统和超混沌Roessler系统作为算例。数值计算结果证实所提出方法的有效性和鲁棒性。  相似文献   

18.
利用哈密顿系统正则变换和生成函数理论求解线性时变最优控制问题,构造了新的最优控制律形式并提出了控制增益计算的保结构算法. 利用生成函数求解最优控制导出的哈密顿系统两端边值问题,并构造线性时变系统的最优控制律,由第2类生成函数所构造的最优控制律避免了末端时刻出现无穷大反馈增益. 控制系统设计中需求解生成函数满足的时变矩阵微分方程组. 根据生成函数与哈密顿系统状态转移矩阵之间的关系,从正则变换的辛矩阵描述出发,导出了求解这组微分方程组的保结构递推算法.为了保持递推计算中的辛矩阵结构,哈密顿系统状态转移矩阵的计算中利用了Magnus级数.   相似文献   

19.
In this paper, a new fractional order stretch-twist-fold (STF) flow dynamical system is proposed. The stability analysis of the proposed system equilibria is accomplished and we establish that the system is exhibited chaos even for order less than 3. The active control method is applied to enquire the hybrid phase synchronization between two identical fractional order STF flow chaotic systems. These synchronized systems are applied to formulate an authenticated encryption scheme newly for message (text and image) recovery. It is widely applied in the field of secure communication. Numerical simulations are presented to validate the effectiveness of the proposed theory.  相似文献   

20.
This paper investigates the asymptotic behaviour of solutions to certain infinite systems of coupled recurrence relations. In particular, we obtain a characterisation of those initial values which lead to a convergent solution, and for initial values satisfying a slightly stronger condition we obtain an optimal estimate on the rate of convergence. By establishing a connection with a related problem in continuous time, we are able to use this optimal estimate to improve the rate of convergence in the continuous setting obtained by the authors in a previous paper. We illustrate the power of the general approach by using it to study several concrete examples, both in continuous and in discrete time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号