首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This letter proposes a new 3D quadratic autonomous chaotic system which displays an extremely complicated dynamical behavior over a large range of parameters. The new chaotic system has five real equilibrium points. Interestingly, this system can generate one-wing, two-wing, three-wing and four-wing chaotic attractors and periodic motion with variation of only one parameter. Besides, this new system can generate two coexisting one-wing and two coexisting two-wing attractors with different initial conditions. Furthermore, the transient chaos phenomenon happens in the system. Some basic dynamical behaviors of the proposed chaotic system are studied. Furthermore, the bifurcation diagram, Lyapunov exponents and Poincaré mapping are investigated. Numerical simulations are carried out in order to demonstrate the obtained analytical results. The interesting findings clearly show that this is a special strange new chaotic system, which deserves further detailed investigation.  相似文献   

2.
On properties of hyperchaos: Case study   总被引:1,自引:0,他引:1  
Some properties of hyperchaos are exploited by studying both uncoupled and coupled CML. In addition to usual properties of chaotic strange attractors, there are other interesting properties, such as: the number of unstable periodic points embedded in the strange attractor increases dramatically increasing and a large number of low-dimensional chaotic invariant sets are contained in the strange attractor. These properties may be useful for regarding the edge of chaos as the origin of complexity of dynamical systems. The project supported by the National Natural Science Foundation of China  相似文献   

3.
4.
The dynamical behavior of two coupled parametrically excited van der pol oscillators is investigated in this paper. Based on the averaged equations, the transition boundaries are sought to divide the parameter space into a set of regions, which correspond to different types of solutions. Two types of periodic solutions may bifurcate from the initial equilibrium. The periodic solutions may lose their stabilities via a generalized static bifurcation, which leads to stable quasi-periodic solutions, or via a generalized Hopf bifurcation, which leads to stable 3D tori. The instabilities of both the quasi-periodic solutions and the 3D tori may directly lead to chaos with the variation of the parameters. Two symmetric chaotic attractors are observed and for certain values of the parameters, the two attractors may interact with each other to form another enlarged chaotic attractor.  相似文献   

5.
This paper presents a novel bounded four-dimensional (4D) chaotic system which can display hyperchaos, chaos, quasiperiodic and periodic behaviors, and may have a unique equilibrium, three equilibria and five equilibria for the different system parameters. Numerical simulation shows that the chaotic attractors of the new system exhibit very strange shapes which are distinctly different from those of the existing chaotic attractors. In addition, we investigate the ultimate bound and positively invariant set for the new system based on the Lyapunov function method, and obtain a hyperelliptic estimate of it for the system with certain parameters.  相似文献   

6.
参数激励耦合系统的复杂动力学行为分析   总被引:3,自引:0,他引:3  
分析了耦合van der Pol振子参数共振条件下的复杂动力学行为.基于平均方程,得到了参数平面上的转迁集,这些转迁集将参数平面划分为不同的区域,在各个不同的区域对应于系统不同的解.随着参数的变化,从平衡点分岔出两类不同的周期解,根据不同的分岔特性,这两类周期解失稳后,将产生概周期解或3—D环面解,它们都会随参数的变化进一步导致混吨.发现在系统的混沌区域中,其混吨吸引子随参数的变化会突然发生变化,分解为两个对称的混吨吸引子.值得注意的是,系统首先是由于2—D环面解破裂产生混吨,该混吨吸引子破裂后演变为新的混吨吸引子,却由倒倍周期分岔走向3—D环面解,也即存在两条通向混沌的道路:倍周期分岔和环面破裂,而这两种道路产生的混吨吸引子在一定参数条件下会相互转换.  相似文献   

7.
This paper reports a new five-dimensional (5D) hyperchaotic system with three positive Lyapunov exponents, which is generated by adding a linear controller to the second equation of a 4D system that is obtained by coupling of a 1D linear system and a 3D modified generalized Lorenz system. This hyperchaotic system has very simple algebraic structure but can exhibit complex dynamical behaviors. Of particular interest are the observations that the hyperchaotic system has a hyperchaotic attractor with three positive Lyapunov exponents under a unique equilibrium, three or infinite equilibria, and there are three types of coexisting attractors of this new 5D hyperchaotic system. Numerical analysis of phase trajectories, Lyapunov exponents, bifurcation, Poincaré projections and power spectrum verifies the existence of the hyperchaotic and chaotic attractors. Moreover, stability of hyperbolic or non-hyperbolic equilibria and two complete mathematical characterization for 5D Hopf bifurcation are rigorously studied. Finally, some electronic circuits are designed to implement the 5D hyperchaotic system.  相似文献   

8.
Intriguing as the discovery of new chaotic maps is, some new maps also bring new nonlinear phenomena of iterative map behavior. In this paper, we present a simple two-dimensional chaotic map which has three totally separated regions. The twin regions, creating strange and interesting attractors, are close to each other and vertically reflected however not identical in shape, while the distant region, generating a Hénon-like attractor, starts with period-doubling until complete chaos. Given the unusual behavior of the map introduced in this paper, we initially presented linear stability and bifurcation analysis per regions, with Lyapunov exponents and largest exponent computation. Besides the standardized calculations, what we focus here is to find out how a simple map can exhibit different chaotic behaviors in different regions.  相似文献   

9.
Time delay feedback has been shown to produce chaos from non-chaotic systems. In this paper, besides the single and double scroll chaotic attractors, a new composite multi-scroll attractor is found in stable systems with time delay feedback. From the viewpoint of the local stability analysis, conservation analysis, Lyapunov exponent spectrum and power spectrum, the composite multi-scroll attractor is shown to be a hyper-chaotic attractor. The phase trajectory in the new composite hyper-chaotic multi-scroll attractor diverges in multiple eigen-directions, which improves the security of secure communication and chaotic encryption. A paradigm using the multi-scroll attractor for encryption is proposed, demonstrating its potential applicability.  相似文献   

10.
在耦合自催化反应系统中,采用数值分析方法研究了考虑时滞效应和流速扰动时子系统的动力学行为.与原系统相比,该系统呈现出更加丰富的动力学现象.反应过程中出现了结构复杂的混沌吸引子和由在周期解邻域内振荡而产生的概周期运动,并且存在混沌由倍周期分岔演变为新的混沌吸引子的过程.这些结果对于解释耦合化学反应系统中的复杂现象、揭示其反应机理具有一定的指导意义.  相似文献   

11.
Chaotic motions and fault detection in a cracked rotor   总被引:9,自引:0,他引:9  
Applying the theory of Lyapunov exponents for nonsmooth dynamical systems, chaotic motions and strange attractors are found in the case of a cracked rotor. To detect the crack and establish a clear relation between shaft cracks in turbo rotors and induced phenomena in vibrations measured in bearings, a model-based method is applied. Based on a fictitious model of the time behaviour of the nonlinearities, a state observer of an extended dynamical system is designed resulting in estimates of the nonlinear effects.  相似文献   

12.
In this paper, a new conception of composite cell coordinate system is presented by dividing the continuous state space into the cell state space with different scales. For a dynamical system, attractors, basins of attraction, basin boundaries, saddles, and invariant manifolds can be easily obtained, and any region of the state space can be refined by this method. The global bifurcations, such as crisis and metamorphosis, of the Rayleigh?CDuffing oscillator are studied by the composite cell coordinate system method. According to the sudden changes in shapes of the chaotic attractor and the chaotic saddle, we find that three types of crises can all occur, including boundary crisis, interior crisis, and attractor emerging crisis. In addition, the basin boundary metamorphoses, such as fractal-Wada, Wada-Wada, and Wada-fractal, are analyzed through observing the shapes of basin boundaries. These results demonstrate the efficiency and validity of this method in analyzing dynamical systems.  相似文献   

13.
The asymptotic attractors of a nonlinear dynamical system play a key role in the long-term physically observable behaviors of the system. The study of attractors and the search for distinct types of attractor have been a central task in nonlinear dynamics. In smooth dynamical systems, an attractor is often enclosed completely in its basin of attraction with a finite distance from the basin boundary. Recent works have uncovered that, in neuronal networks, unstable attractors with a remote basin can arise, where almost every point on the attractor is locally transversely repelling. Herewith we report our discovery of a class of attractors: partially unstable attractors, in pulse-coupled integrate-and-fire networks subject to a periodic forcing. The defining feature of such an attractor is that it can simultaneously possess locally stable and unstable sets, both of positive measure. Exploiting the structure of the key dynamical events in the network, we develop a symbolic analysis that can fully explain the emergence of the partially unstable attractors. To our knowledge, such exotic attractors have not been reported previously, and we expect them to arise commonly in biological networks whose dynamics are governed by pulse (or spike) generation.  相似文献   

14.
Due to uncertain push-pull action across boundaries between different attractive domains by random excitations,attractors of a dynamical system will drift in the phase space,which readily leads to colliding and mixing with each other,so it is very difficult to identify irregular signals evolving from arbitrary initial states.Here,periodic attractors from the simple cell mapping method are further iterated by a specific Poincare’ map in order to observe more elaborate structures and drifts as well as possible dynamical bifurcations.The panorama of a chaotic attractor can also be displayed to a great extent by this newly developed procedure.From the positions and the variations of attractors in the phase space,the action mechanism of bounded noise excitation is studied in detail.Several numerical examples are employed to illustrate the present procedure.It is seen that the dynamical identification and the bifurcation analysis can be effectively performed by this procedure.  相似文献   

15.
This paper focuses on thoroughly exploring the finite-time transient behaviors occurring in a periodically driven non-smooth dynamical system. Prior to settling down into a long-term behavior, such as a periodic forced oscillation, or a chaotic attractor, responses may exhibit a variety of transient behaviors involving regular dynamics, co-existing attractors, and super-persistent chaotic transients. A simple and fundamental impacting mechanical system is used to demonstrate generic transient behavior in an experimental setting for a single degree of freedom non-smooth mechanical oscillator. Specifically, we consider a horizontally driven rigid-arm pendulum system that impacts an inclined rigid barrier. The forcing frequency of the horizontal oscillations is used as a bifurcation parameter. An important feature of this study is the systematic generation of generic experimental initial conditions, allowing a more thorough investigation of basins of attraction when multiple attractors are present. This approach also yields a perspective on some sensitive features associated with grazing bifurcations. In particular, super-persistent chaotic transients lasting much longer than the conventional settling time (associated with linear viscous damping) are characterized and distinguished from regular dynamics for the first time in an experimental mechanical system.  相似文献   

16.
In this paper, we introduce a new chaotic complex nonlinear system and study its dynamical properties including invariance, dissipativity, equilibria and their stability, Lyapunov exponents, chaotic behavior, chaotic attractors, as well as necessary conditions for this system to generate chaos. Our system displays 2 and 4-scroll chaotic attractors for certain values of its parameters. Chaos synchronization of these attractors is studied via active control and explicit expressions are derived for the control functions which are used to achieve chaos synchronization. These expressions are tested numerically and excellent agreement is found. A Lyapunov function is derived to prove that the error system is asymptotically stable.  相似文献   

17.
通过对一类平面二维映射系统非线性动力学行为的分析,发现该系统存在一个奇怪吸引子,该吸引子具有两个正Lyapunov指数和分数维。通过该系统不动点的分析揭示了该吸引子的吸引域边界结构,即不稳定第二类结点与不稳定偶数周期点在吸引域边界上的相间排列。  相似文献   

18.
In this paper a periodic parameter-switching scheme is applied to the Hindmarsh–Rose neuronal system to synthesize certain attractors. Results show numerically, via computer graphic simulations, that the obtained synthesized attractor belongs to the class of all admissible attractors for the Hindmarsh–Rose neuronal system and matches the averaged attractor obtained with the control parameter replaced with the averaged switched parameter values. This feature allows us to imagine that living beings are able to maintain vital behavior while the control parameter switches so that their dynamical behavior is suitable for the given environment.  相似文献   

19.
This paper considers an ensemble of Chua oscillators bidirectionally coupled in a ring geometry where locally coupled circuits form a closed loop of signal transmission. The spontaneous dynamics of this system is studied numerically for different coupling strength. A transition from periodic to chaotic regimes is observed when the coupling decreases. In the former situation, characterized by high coupling, all the circuits oscillate with pseudo-sinusoidal dynamics on periodic attractors; in the latter they evolve on the same-type of chaotic attractor with a progression of the dynamics from the Chua's spiral to the double scroll as the coupling decreases. The emerging global dynamics is markedly different in the two cases and a phase transition between highly ordered and highly disordered global dynamics is observed. Synchronization and traveling waves moving along the ring are identified in the non-chaotic regime, while spatio-temporal chaos results for very low coupling. Complex patterns formation appears at the “edge of chaos”, for a small couplings interval after the transition between these two regimes.  相似文献   

20.
In this paper, a fractional 3-dimensional (3-D) 4-wing quadratic autonomous system (Qi system) is analyzed. Time domain approximation method (Grunwald–Letnikov method) and frequency domain approximation method are used together to analyze the behavior of this fractional order chaotic system. It is found that the decreasing of the system order has great effect on the dynamics of this nonlinear system. The fractional Qi system can exhibit chaos when the total order less than 3, although the regular one always shows periodic orbits in the same range of parameters. In some fractional order, the 4 wings are decayed to a scroll using the frequency domain approximation method which is different from the result using time domain approximation method. A surprising finding is that the phase diagrams display a character of local self-similar in the 4-wing attractors of this fractional Qi system using the frequency approximation method even though the number and the characteristics of equilibria are not changed. The frequency spectrums show that there is some shrinking tendency of the bandwidth with the falling of the system states order. However, the change of fractional order has little effect on the bandwidth of frequency spectrum using the time domain approximation method. According to the bifurcation analysis, the fractional order Qi system attractors start from sink, then period bifurcation to some simple periodic orbits, and chaotic attractors, finally escape from chaotic attractor to periodic orbits with the increasing of fractional order α in the interval [0.8,1]. The simulation results revealed that the time domain approximation method is more accurate and reliable than the frequency domain approximation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号