首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces two novel fractional-order chaotic systems with cubic nonlinear resistor and investigates its adaptive sliding mode synchronization. Firstly the novel two equilibrium chaotic system with cubic nonlinear resistor (NCCNR) is derived and its dynamic properties are investigated. The fractional-order cubic nonlinear resistor system (FONCCNR) is then derived from the integer-order model and its stability and fractional-order bifurcation are discussed. Next a novel no-equilibrium chaotic cubic nonlinear resistor system (NECNR) is derived from NCCNR system. Dynamic properties of NECNR system are investigated. The fractional-order no equilibrium cubic nonlinear resistor system (FONECNR) is derived from NECNR. Stability and fractional-order bifurcation are investigated for the FONECNR system. The non-identical adaptive sliding mode synchronization of FONCCNR and FONECNR systems are achieved. Finally the proposed systems, adaptive control laws, sliding surfaces and adaptive controllers are implemented in FPGA.  相似文献   

2.
A practical synchronization approach is proposed for a class of fractional-order chaotic systems to realize perfect \(\delta \)-synchronization, and the nonlinear functions in the fractional-order chaotic systems are all polynomials. The \(\delta \)-synchronization scheme in this paper means that the origin in synchronization error system is stable. The reliability of \(\delta \)-synchronization has been confirmed on a class of fractional-order chaotic systems with detailed theoretical proof and discussion. Furthermore, the \(\delta \)-synchronization scheme for the fractional-order Lorenz chaotic system and the fractional-order Chua circuit is presented to demonstrate the effectiveness of the proposed method.  相似文献   

3.
We design a new three-dimensional double-wing fractional-order chaotic system with three quadratic terms, confirmed by numerical simulation and circuit implementation. We then study the synchronization between the new double-wing fractional-order chaotic system and different Lorenz systems with different structures. In the process of the synchronization, the definition of ‘the simplest response system’ and the practical method of designing the circuit have been originally proposed. The circuit of ‘the simplest response system’ (even the simplest incommensurate-order response system), holding different structures with the drive system, of any one integral or fractional drive system now can be designed effectively and sufficiently. Our results are supported by numerical simulation and circuit implementation.  相似文献   

4.
In this paper, we investigate synchronization and its DSP implementation of fractional-order simplified Lorenz hyperchaotic systems by employing the Adomian decomposition method. The active controller and linear feedback controller are designed. Numerical simulation of the synchronized systems is carried out, and it is found that the synchronization phenomenon can be observed in both state variables and intermediate variables. Moreover, the synchronized systems are implemented in two TMS320F2-8335 DSP boards which are connected by a serial port and the output signals are exhibited by an oscilloscope. The experiment results show that the proposed implementation method works well on DSP.  相似文献   

5.
A new fractional-order chaotic system with absolute value term is introduced. Some dynamical behaviors are investigated and analyzed. Furthermore, synchronization of this system is achieved by utilizing the drive-response method and the feedback method. The suitable parameters for achieving synchronization are studied. Both the theoretical analysis and numerical simulations show the effectiveness of the two methods.  相似文献   

6.
Guo  Mei  Yang  Ran  Zhang  Meng  Liu  Renyuan  Zhu  Yongliang  Dou  Gang 《Nonlinear dynamics》2021,105(1):877-886
Nonlinear Dynamics - In this paper, a novel memcapacitor is designed by the SBT ( $$\hbox {Sr}_{0.95}\hbox {Ba}_{0.05}\hbox {TiO}_{{3}}$$ ) memristor and two capacitors. A fifth-order memcapacitor...  相似文献   

7.
8.
In this article, a novel dynamic system, the fractional-order complex Lorenz system, is proposed. Dynamic behaviors of a fractional-order chaotic system in complex space are investigated for the first time. Chaotic regions and periodic windows are explored as well as different types of motion shown along the routes to chaos. Numerical experiments by means of phase portraits, bifurcation diagrams and the largest Lyapunov exponent are involved. A new method to search the lowest order of the fractional-order system is discussed. Based on the above result, a synchronization scheme in fractional-order complex Lorenz systems is presented and the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.  相似文献   

9.
10.
11.
In this paper, we discuss and investigate the impulsive synchronization of fractional-order discrete-time chaotic systems. The proposed method is based on the impulsive synchronization theory used in the integer-order case on the one hand and the mathematical analysis of the fractional-order discrete-time systems on the other hand. Sufficient conditions for the stability of synchronization error system are given, and application example with numerical simulations is illustrated in order to verify that the proposed method is applicable and effective. Furthermore, in order to validate the proposed synchronization approach, we have also provided the experimental implementation results using Arduino Mega boards.  相似文献   

12.
This paper presents a new technique using a recurrent non-singleton type-2 sequential fuzzy neural network (RNT2SFNN) for synchronization of the fractional-order chaotic systems with time-varying delay and uncertain dynamics. The consequent parameters of the proposed RNT2SFNN are learned based on the Lyapunov–Krasovskii stability analysis. The proposed control method is used to synchronize two non-identical and identical fractional-order chaotic systems, with time-varying delay. Also, to demonstrate the performance of the proposed control method, in the other practical applications, the proposed controller is applied to synchronize the master–slave bilateral teleoperation problem with time-varying delay. Simulation results show that the proposed control scenario results in good performance in the presence of external disturbance, unknown functions in the dynamics of the system and also time-varying delay in the control signal and the dynamics of system. Finally, the effectiveness of proposed RNT2SFNN is verified by a nonlinear identification problem and its performance is compared with other well-known neural networks.  相似文献   

13.
Zhang  Ruoxun  Yang  Shiping 《Nonlinear dynamics》2011,66(4):831-837
This letter investigates the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on sliding mode variable structure control theory and adaptive control technique, a single-state adaptive-feedback controller containing a novel fractional integral sliding surface is developed to synchronize a class of fractional-order chaotic systems. The present controller, which only contains a single driving variable, is simple both in design and implementation. Simulation results for three fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

14.
On the simplest fractional-order memristor-based chaotic system   总被引:1,自引:0,他引:1  
In 1695, G. Leibniz laid the foundations of fractional calculus, but mathematicians revived it only 300 years later. In 1971, L.O. Chua postulated the existence of a fourth circuit element, called memristor, but Williams??s group of HP Labs realized it only 37 years later. By looking at these interdisciplinary and promising research areas, in this paper, a novel fractional-order system including a memristor is introduced. In particular, chaotic behaviors in the simplest fractional-order memristor-based system are shown. Numerical integrations (via a predictor?Ccorrector method) and stability analysis of the system equilibria are carried out, with the aim to show that chaos can be found when the order of the derivative is 0.965. Finally, the presence of chaos is confirmed by the application of the recently introduced 0-1 test.  相似文献   

15.
Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
This paper is devoted to study the problem of modified projective synchronization of fractional-order chaotic system. Base on the stability theorems of fractional-order linear system, active sliding mode controller is proposed to synchronize two different fractional-order systems. Moreover, the controller is robust to the bounded noise. Numerical simulations are provided to show the effectiveness of the analytical results.  相似文献   

17.
In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters.  相似文献   

18.
We introduce a simple chaotic system that contains one multiplier and one quadratic term. The system is similar to the generalized Lorenz system but is not topologically equivalent. The properties of the proposed chaotic system are examined by theoretical and numerical analysis. An analog chaotic circuit is implemented that realizes the chaotic system for the verification of its attractor. Furthermore, we propose a robust function projective synchronization using time delay estimation. A numerical simulation of synchronization between the proposed system and the Lorenz system demonstrates that the proposed approach provides fast and robust synchronization even in the presence of unknown parameter variations and disturbances.  相似文献   

19.
20.
This article presents a new hyperchaotic system of four-dimensional quadratic autonomous ordinary differential equations, which has one equilibrium point and two quadratic nonlinearities. Some basic dynamical properties are further investigated by means of Poincaré mapping, parameter phase portraits, and calculated Lyapunov exponents and power spectra. The existence of the hyperchaotic system is verified not only by theoretical analysis but also by conducting a novel fourth-order electronic circuit experiment. Various attractors of experimental results show that this 4D hyperchaotic system is different from the historically proposed system and has good engineering application prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号