首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper aims at mitigating regenerative chatter in plunge grinding. To begin with, a dynamic model is proposed to investigate grinding dynamics, where eigenvalue and bifurcation analyses are adopted, respectively, for prediction of grinding stability and chatter. Generally, it is found that most grinding chatter is incurred by subcritical Hopf bifurcation. Compared with supercritical instability, the subcritical generates coexistence of stable and unstable grinding in the stable region and increases chatter amplitude in the chatter region. To avoid these adverse effects of the subcritical instability, bifurcation control is employed, where the cubic non-linearity of the relative velocity between grinding wheel and workpiece is used as feedback. With the increase of feedback gain, the subcritical instability is transformed to be supercritical not only locally but also globally. Finally, the conditionally stable region is completely removed and the chatter amplitude is decreased. After that, to further reduce the chatter amplitude, quench control is used as well. More specifically, an external sinusoid excitation is applied on the wheel to quench the existing grinding chatter, replacing the large-amplitude chatter by a small-amplitude forced vibration. Through the method of multiple scales, the condition for quenching the chatter is obtained.  相似文献   

2.
In this paper the non-linear dynamics of a state-dependent delay model of the turning process is analyzed. The size of the regenerative delay is determined not only by the rotation of the workpiece, but also by the vibrations of the tool. A numerical continuation technique is developed that can be used to follow the periodic orbits of a system with implicitly defined state-dependent delays. The numerical analysis of the model reveals that the criticality of the Hopf bifurcation depends on the feed rate. This is in contrast to simpler constant delay models where the criticality does not change. For small feed rates, subcritical Hopf bifurcations are found, similar to the constant delay models. In this case, periodic orbits coexist with the stable stationary cutting state and so there is the potential for large amplitude chatter and bistability. For large feed rates, the Hopf bifurcation becomes supercritical for a range of spindle speeds. In this case, stable periodic orbits instead coexist with the unstable stationary cutting state, removing the possibility of large amplitude chatter. Thus, the state-dependent delay in the model has a kind of stabilizing effect, since the supercritical case is more favorable from a practical viewpoint than the subcritical one.  相似文献   

3.
We investigate the control of friction-induced vibrations in a system with a dynamic friction model which accounts for hysteresis in the friction characteristics. Linear time-delayed position feedback applied in a direction normal to the contacting surfaces has been employed for the purpose. Analysis shows that the uncontrolled system loses stability via. a subcritical Hopf bifurcation making it prone to large amplitude vibrations near the stability boundary. Our results show that the controller achieves the dual objective of quenching the vibrations as well as changing the nature of the bifurcation from subcritical to supercritical. Consequently, the controlled system is globally stable in the linearly stable region and yields small amplitude vibrations if the stability boundary is crossed due to changes in operating conditions or system parameters. Criticality curve separating regions on the stability surface corresponding to subcritical and supercritical bifurcations is obtained analytically using the method of multiple scales (MMS). We have also identified a set of control parameters for which the system is stable for lower and higher relative velocities but vibrates for the intermediate ones. However, the bifurcation is always supercritical for these parameters resulting in low amplitude vibrations only.  相似文献   

4.
武世江  张继业  隋皓  殷中慧  胥奇 《力学学报》2021,53(9):2569-2581
针对轮对系统中的非线性动力学问题, 本文基于Hopf分岔代数判据得到考虑陀螺效应的轮对系统Hopf分岔点解析表达式, 即轮对系统蛇形失稳的线性临界速度解析表达式. 基于分岔理论得到轮对系统的第一、第二Lyapunov系数表达式, 并结合打靶法分别得到不同纵向刚度下, 考虑陀螺效应与不考虑陀螺效应的轮对系统分岔图. 通过对比有无陀螺效应的轮对系统分岔图发现, 在同一纵向刚度下, 考虑陀螺效应的轮对系统线性临界速度和非线性临界速度均大于不考虑陀螺效应的轮对系统, 即陀螺效应可以提高轮对系统的运动稳定性. 基于Bautin分岔理论, 以纵向刚度和纵向速度作为参数, 分别得到考虑陀螺效应和不考虑陀螺效应的轮对系统, 从亚临界Hopf分岔到超临界Hopf分岔, 再从超临界Hopf分岔到亚临界Hopf分岔的迁移机理拓扑图. 通过对比有、无陀螺效应的轮对系统Bautin分岔拓扑图发现, 陀螺效应将改变轮对系统的退化Hopf分岔点, 但对于轮对系统Bautin分岔拓扑图的影响不大.   相似文献   

5.
Chaotic vibrations in high-speed milling   总被引:2,自引:0,他引:2  
A large number of literatures are devoted to the stability of the milling process and various control methods for chatter suppression. But chaotic dynamics beyond the stable region has not been considered extensively. Moreover, modeling issues for chaotic motion need more challenge for accurate prediction of its complex dynamical behavior. This paper presents a detailed two-degree-of-freedom mechanics based model for the study of chaotic vibrations in milling. Segmental multiple regenerative effect that is the principle feature of nonlinear vibrations in milling processes besides two state dependent time delays has been considered. Exact geometrical formulation of multiple regenerative effects by considering simultaneously different numbers of delayed tool positions over the cutting zone is presented for the first time. Phase portrait, bifurcation diagram, largest Lyapunov exponent, and surface profile were calculated for a given machine tool and workpiece parameters. The simulation results show positive values of the largest Lyapunov exponent corresponding to the existence of chaos in high-speed milling operations. Also, investigation of the machined surface of the workpiece formed by the helical mill demonstrates an irregular pattern on the surface.  相似文献   

6.
A nonlinear dynamic system of cylindrical transverse grinding process is studied in this paper. The system consists of a grinding wheel and a workpiece, which are connected to the base by spring-damper elements, interacting with nonlinear normal forces. This two DOF model includes two time delays originated from the regenerative effects of the workpiece and the grinding wheel. Bifurcation points are located using a numerical algorithm by which we can find all the eigenvalues in a given rectangular region on the complex plane for the delayed differential equations. Supercritical bifurcation has been found for some sets of system parameter values. The amplitudes of the limit cycles are predicted using a nonlinear time transformation method, which is similar to the harmonic balance approach in that a periodic solution is approximated by a Fourier series. However, the main difference is that a nonlinear time ? is introduced in the Fourier series rather than the physical time t. The analytical solutions of stable limit cycles up to the third harmonics are compared with numerical simulations for the retarded system. It is shown that the proposed method gives accurate approximate solutions.  相似文献   

7.
In this paper, the vortex-induced vibrations of a hinged–hinged pipe conveying fluid are examined, by considering the internal fluid velocities ranging from the subcritical to the supercritical regions. The nonlinear coupled equations of motion are discretized by employing a four-mode Galerkin method. Based on numerical simulations, diagrams of the displacement amplitude versus the external fluid reduced velocity are constructed for pipes transporting subcritical and supercritical fluid flows. It is shown that when the internal fluid velocity is in the subcritical region, the pipe is always vibrating periodically around the pre-buckling configuration and that with increasing external fluid reduced velocity the peak amplitude of the pipe increases first and then decreases, with jumping phenomenon between the upper and lower response branches. When the internal fluid velocity is in the supercritical region, however, the pipe displays various dynamical behaviors around the post-buckling configuration such as inverse period-doubling bifurcations, periodic and chaotic motions. Moreover, the bifurcation diagrams for vibration amplitude of the pipe with varying internal fluid velocities are constructed for each of the lowest four modes of the pipe in the lock-in conditions. The results show that there is a significant difference between the vibrations of the pipe around the pre-buckling configuration and those around the post-buckling configuration.  相似文献   

8.
We study the bifurcation characteristics of a lumped-parameter model of rotary drilling with 1:1 internal resonance between the axial and the torsional modes which leads to the largest stability thresholds. For this special case, the two-degree-of-freedom model for the drill-string reduces to an effectively single-degree-of-freedom system facilitating further analysis. The regenerative effect of the cutting action due to the axial vibrations is incorporated through a delayed term in the cutting force with the delay depending on the torsional oscillations. This state dependency of the delay introduces nonlinearity in the current model. Steady drilling loses stability via a Hopf bifurcation, and the nature of the bifurcation is determined by an analytical study using the method of multiple scales. We find that both subcritical and supercritical Hopf bifurcations are present in this system depending on the choice of operating parameters. Hence, the nonlinearity due to the state-dependent delay term could both be stabilizing or destabilizing in nature, and the self-interruption nonlinearity is essential to capture the global behavior. Numerical bifurcation analysis of a global axial–torsional model of rotary drilling further confirms the analytical results from the method of multiple scales. Further exploration of the rotary drilling dynamics unravels more complex phenomena including grazing bifurcations and possibly chaotic solutions.  相似文献   

9.
In this paper, the occurrence of various types of bifurcation including symmetry breaking, period-doubling (flip) and secondary Hopf (Neimark) bifurcations in milling process with tool-wear and process damping effects are investigated. An extended dynamic model of the milling process with tool flank wear, process damping and nonlinearities in regenerative chatter terms is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. Non-autonomous parametrically excited equations of the system with time delay terms are developed. The multiple-scale approach is used to construct analytical approximate solutions under primary resonance. Periodic, quasi-periodic and chaotic behavior of the limit cycles is predicted in the presence of regenerative chatter. Detuning parameter (deviation of the tooth passing frequency from the chatter frequency), damping ratio (affected by process damping) and tool-wear width are the bifurcation parameters. Multiple period-doubling and Hopf bifurcations occur when the detuning parameter is varied. As the damping ratio changes, symmetry breaking bifurcation is observed whereas the variation of tool wear width causes both symmetry breaking and Hopf bifurcations. Also, under special damping specifications, chaotic behavior is seen following the Hopf bifurcation.  相似文献   

10.
A passive vibration absorber, termed the nonlinear tuned vibration absorber (NLTVA), is designed for the suppression of chatter vibrations. Unlike most passive vibration absorbers proposed in the literature for suppressing machine tool vibrations, the NLTVA comprises both a linear and a nonlinear restoring force. Its linear characteristics are tuned in order to optimize the stability properties of the machining operation, while its nonlinear properties are chosen in order to control the bifurcation behavior of the system and guarantee robustness of stable operation. In this study, the NLTVA is applied to turning machining.  相似文献   

11.
Chatter is an instability condition in machining processes characterized by nonlinear behavior, such as the presence of limit cycles, jump phenomenon, subcritical Hopf and period doubling bifurcations. Although the use of nonlinear techniques has provided a better understanding of chatter, neither a unifying model nor an exact solution has yet been developed due to the intricacy of the problem. This work proposes a weakly nonlinear model with square and cubic terms in both structural stiffness and regenerative terms, to represent self-excited vibrations in machining. An approximate solution is derived by using the method of multiple scales. In addition, a qualitative analysis of the effect of the nonlinear parameters on the stability of the system is performed. The structural cubic term gives a better representation of the nonlinear behavior, whereas the square term represents a distant attractor in the stability chart. Instability due to subcritical Hopf bifurcations is established in terms of the eigenvalues of the model in normal form. An important contribution of this analysis is the representation of hysteresis in terms of new lobes within the conventional stability limits, useful in restoring stability. This analysis leads to a further understanding of the nonlinear behavior of regenerative chatter.  相似文献   

12.
In this study, the yaw dynamics of a towed caster wheel system is analysed via an in-plane, one degree-of-freedom mechanical model. The force and aligning torque generated by the elastic tyre are calculated by means of a semi-stationary tyre model, in which the piecewise-smooth characteristic of the tyre forces is also considered, resulting in a dynamical system with higher-order discontinuities. The focus of our analysis is the Hopf bifurcation affected by the non-smoothness of the system. The structure of the analysis is organised in a similar way as in case of smooth bifurcations. Firstly, the centre-manifold reduction is performed, then we compose the normal form of the bifurcation. Based on the Galerkin technique an approximate, semi-analytical method to calculate the limit cycles is introduced and compared with the method of collocation. The analysis provides a deeper insight into the development of the vibrations associated with wheel shimmy and demonstrate how the non-smoothness due to contact-friction influences the dynamic behaviour.  相似文献   

13.
This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.  相似文献   

14.
Hesabi Hesari  Abbas  Moradi  Hamed  Movahhedy  Mohammad R. 《Meccanica》2020,55(9):1707-1731

Self-excited vibrations known as chatter are considered as the most detrimental issue in micro-turning processes. Occurring unpredictably, they adversely affect the tool life, productivity rate and surface quality of the machining processes. In this paper, a novel machining arm is modeled as a piezoelectric stacked rod which is subjected to a chatter force in the orthogonal micro-turning process. Due to the fact that machining processes are affected by various sources of uncertainties, H robust control approach is used to suppress the chatter vibrations of the machining arm in the presence of tool wear and dynamic model parameter variations. Also, input control force of the system is provided by exciting the input voltage of piezoelectric layers of the rod. In order to be certain that the designed controller succeeds in suppressing vibrations of the effective structural modes, behavior of the first three modes of vibrations are considered in the final response of the machining arm. In the following, performance of the robust H controller is compared with a modified PID controller. Simulation results show that the H controller improves the robustness and performance of the system against uncertainties. The PID controller extends the stability region of the sharp tool and fails to achieve this purpose for the worn tool although its performance is acceptable in suppressing chatter vibrations.

  相似文献   

15.
We investigate the effectiveness of linear and nonlinear time-delay feedback controls to suppress high amplitude oscillations of an elastically mounted square cylinder undergoing galloping oscillations. A representative model that couples the transverse displacement and the aerodynamic force is used. The quasi-steady approximation is used to model the galloping force. A linear analysis is performed to investigate the effect of linear time-delay controls on the onset speed of galloping and natural frequencies. It is demonstrated that a linear time-delay control can be used to delay the onset speed of galloping. The normal form of the Hopf bifurcation is then derived to characterize the type of the instability (supercritical or subcritical) and to determine the effects of the linear and nonlinear time-delay parameters on their outputs near the bifurcation. The results show that the nonlinear time-delay control can be efficiently implemented to significantly reduce the galloping amplitude and suppress any dangerous behavior by converting any subcritical Hopf bifurcation into a supercritical one.  相似文献   

16.
Titanium and its alloys are widely recognized as the hardly machinable materials, especially due to their relatively high hardness, low thermal conductivity and possible subcritical superplasticity. Then, a thorough control of the machining process parameters shall be maintained. In this paper, we have concentrated on the grinding of the Ti6Al4V titanium alloy using cBN (boron nitride) grinding wheel combined with the AEDG (abrasive electrodischarge grinding) process. The mathematical model we have dealt with has been based mainly on Jaeger model of the heat taking over between sliding bodies with substantial upgrades related to:
  • estimation of the frictional heat generating based on friction forces distribution,
  • spatial, not only planar, shape of the contact area,
  • generated heat partition between different parties of the grinding process,
  • heat transfer in the multilayered environment.
The experimental verification of the theoretical predictions has been carried out. Fundamental difficulty in such a research is placing temperature probes sufficiently close to the ground surface with possibly low space devoted for probes due to the temperature field deformation with relation to the real conditions of grinding. The temperature field in the machined workpiece has been investigated using electronic data logging and DSP methods. Obtained results exhibit clearly that distribution of heat generation in the contact zone could be of the relatively complicated shape due to the external cooling and the very specific heat transfer and accumulation in the titanium workpiece surface layer.
  相似文献   

17.
In this paper, we investigate theoretically and experimentally dynamics of a buckled beam under high-frequency excitation. It is theoretically predicted from linear analysis that the high-frequency excitation shifts the pitchfork bifurcation point and increases the buckling force. The shifting amount increases as the excitation amplitude or frequency increases. Namely, under the compressive force exceeding the buckling one, high-frequency excitation can stabilize the beam to the straight position. Some experiments are performed to investigate effects of the high-frequency excitation on the buckled beam. The dependency of the buckling force on the amounts of excitation amplitude and frequency is compared with theoretical results. The transient state is observed in which the beam is recovered from the buckled position to the straight position due to the excitation. Furthermore, the bifurcation diagrams are measured in the cases with and without high-frequency excitation. It is experimentally clarified that the high-frequency excitation changes the nonlinear property of the bifurcation from supercritical pitchfork bifurcation to subcritical pitchfork bifurcation and then the stable steady state of the beam exhibits hysteresis as the compressive force is reversed. This work was partially supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology, under Grants-in-Aid for Scientific Research 16560377.  相似文献   

18.
Design and Modeling for Chatter Control   总被引:1,自引:0,他引:1  
Pratt  J. R.  Nayfeh  A. H. 《Nonlinear dynamics》1999,19(1):49-69
Boring bars for single-point turning on a lathe are particularly susceptible to chatter and have been the subject of numerous studies. Chatter is, in general, caused by instability. Clearly, the cutting process can be limited to regions of known stable operation. However, this severely constrains the machine-tool operation and causes a decrease in productivity. The more aggressive approach is to attack the stability problem directly through application of vibration control. Here, we demonstrate a new biaxial vibration control system (VPI Smart Tool) for boring bars. We present the experimentally determined modal properties of the VPI Smart Tool and demonstrate how these properties may be used to develop models suitable for chatter stability analysis, simulation, and development of feedback compensation. A phenomenological chatter model that captures much of the rich dynamic character observed during experiments is presented. We introduce the notion that the mean cutting force changes direction as the width of cut increases due to the finite nose radius of the tool. This phenomenon is used to explain the progression from chatter that is dominated by motions normal to the machined surface at small widths of cut to chatter that is dominated by motions tangential to the machined surface at large widths of cut. We show experimental evidence to support our assertion that a biaxial actuation scheme is necessary to combat the tendency of the tool to chatter in both directions. We then present some preliminary theoretical results concerning the persistence of subcritical instability as we expand consideration to high-speed machining.  相似文献   

19.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

20.
Hysteresis phenomena and multistability play crucial roles in the dynamics of coupled oscillators, which are now interpreted from the point of view of codimension-two bifurcations. On the Ott–Antonsen’s manifold, two-parameter bifurcation sets of delay-coupled Kuramoto model are derived regarding coupling strength and delay as bifurcation parameters. It is rigorously proved that the system must undergo Bautin bifurcations for some critical values; thus, there always exists saddle-node bifurcation of periodic solutions inducing hysteresis loop. With the aid of center manifold reduction method and the MATLAB package DDE-BIFTOOL, the location of Bautin and double Hopf points and detailed dynamics are theoretically determined. We find that, near these critical points, four coherent states (two of which are stable) and a stable incoherent state may coexist and that the system undergoes Neimark–Sacker bifurcation of periodic solutions. Finally, the clear scenarios about the synchronous transition in delayed Kuramoto model are depicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号