首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the influence of the native staircase nanostructure of a Au(111) vicinal surface upon the self-assembly of alkylthiols. Through a comparison with standard alkylthiol SAMs deposited on Au(111) flat surfaces, we show that on the vicinal surface the octanethiol monolayer (OT SAM) reproduces the nanopatterned staircase structure, giving rise to a new kind of molecular layer self-ordered on the nanometer scale. The SAM's structure is determined by UHV STM and PM-IRRAS measurements and exhibits a specific behavior relative to the nanostructured substrate. The differences from the film grown on Au(111) are attributed to the influence of step edges on the molecular packing, leading to a specific 2D crystallographic order through the step edges.  相似文献   

2.
Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 A length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 x square root3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases: an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au-Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.  相似文献   

3.
"Nanotube" structures of the alpha-, beta-, and gamma-cyclodextrins (CyD's), which are similar to that of CyD-polyrotaxane, were constructed by potential-controlled adsorption onto Au(111) surfaces in sodium perchlorate solution without a threaded polymer. CyD molecules adsorbed randomly on bare Au(111) surfaces without potential control and the desorption of CyD's from Au surfaces was observed at a negative potential of less than -0.60 V versus SCE. On the other hand, in the specific range between these potentials, ordered molecular arrays with "nanotube" structures of the CyD's (alpha-, beta-, and gamma-CyD) were observed on Au(111). The range of potentials for formation of the "nanotube" structures of alpha-, beta-, and gamma-CyD was from -0.15 to -0.20 V, from -0.25 to -0.45 V, and from -0.22 to -0.45 V, respectively. beta- and gamma-CyD require a more negative potential for adsorption-induced self-organization (AISO) than alpha-CyD in order to weaken adsorption and induce self-organization. Furthermore, we have succeeded in the visualization of the dynamic process in solution, such as the self-ordering, and the destruction of the nanotube structure. These results indicate that control of the electrode potential facilitates management of the delicate balance of various interactions, resulting in the formation of two-dimensional supramolecular structures on the substrates.  相似文献   

4.
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt2+ solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)‐step‐like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the C?C bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.  相似文献   

5.
An ultrathin self‐assembly monolayer of rubrene on Au(111) has been fabricated and studied by scanning tunneling microscopy. The apparent thickness of such monolayer is 0.08 nm and close to the radius of a carbon atom. Moreover, the rubrene molecules within the second layer prefer adsorbing on to the positions corresponding to the herringbone structure underneath the Au(111)–() while the Au surface is fully covered by a monolayer of rubrene. With the assistant with theoretical simulations, we reveal that small apparent height of such monolayer is due to the coupling between the molecular orbitals and the gold surface. About 0.237 electron per rubrene molecule is transferred to the surface, and as a consequence, an interfacial dipole is formed on the rubrene/Au interface. The formation of such interfacial dipole induced by charge transfer from molecules to surfaces is believed to be applied in organic molecules adsorbed on metal surfaces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Electrochemical behaviour of the Au(111) vicinal faces; {111} stepped surfaces. The Au(332) and Au(776) facets forming on Au(554) and Au(775) faceted vicinal faces have different electrochemical behaviours. The electrochemical study in NaF solutions of the Au(776) face reveals that the whole of the {111} steps of an Au(776) surface have the same electrochemical behaviour as the Au(332) face. On the other hand, the (111) terraces of Au(776) behave differently from the large (111) terraces of an Au(111) single-crystal electrode. The atomic reconstruction of the (111) terraces of the Au(776) facets, observed by vacuum STM, completely disappears in contact with the solution, whereas the reconstruction of the wide (111) terraces of a Au(111) single-crystal does not disappear completely. Measurements of the differential capacity C(E) also showed that faceted or non-faceted surfaces of Au(554) and Au(775) faces had the same electrochemical behaviour. This implies that non-faceted surfaces consist of Au(332) and Au(111)(1 × 1) domains that have independent electrochemical behaviours.  相似文献   

7.
The design of silicon/alkyl layer/metal junctions for the formation of optimal top metal contacts requires knowledge of the mechanistic and energetic aspects of the interactions of metal atoms with the modified surface. This involves (a) the interaction of the metal with the terminal groups of the organic layer, (b) the diffusion of metal atoms through the organic layer and (c) the reactions of metal atoms with the silicon surface atoms. The diffusion through the monolayer and the metal catalyzed breakage of Si-C bonds must be avoided to obtain high quality junctions. In this work, we performed a comprehensive density functional theory investigation to identify the reaction pathways of all these processes. In the absence of a reactive terminal group, gold atoms may penetrate through a compact alkyl monolayer on Si(111) with no energy barrier. However, the presence of thiol terminal groups introduces a high energy barrier which blocks the diffusion of metals into the monolayer. The diffusion barriers increase in the order Ag < Au < Cu and correlate with the stability of metal-thiolate complexes whereas the barriers for the formation of metal silicides increase in the order Cu < Au < Ag in correlation with the increasing metallic radii. The reactivity of gold clusters with functionalized Si(111) surfaces was also investigated. Metal silicide formation can only be avoided by a compact monolayer terminated by a reactive functional group. The mechanistic and energetic picture obtained in this work contributes to understanding of the factors that influence the quality of top metal contacts during the formation of silicon/organic layer/metal junctions.  相似文献   

8.
采用密度泛函理论(DFT)计算了Pd(111)表面含有N(N=1-4)个Au原子数目时的表面形成能,选取最优构型进一步研究了噻吩在Au/Pd(111)双金属表面的吸附模式及加氢脱硫反应过程.结果表明:当Pd(111)表面含有1个Au原子时,其形成能最低.在Au/Pd(111)双金属表面噻吩初始吸附于Pd-Hcp-30°位时,其构型最稳定.在各加氢脱硫过程中,反应总体均放出热量.对于直接脱硫机理,其所需活化能较低,但脱硫产物较难控制;对于间接脱硫机理,反应最有可能按照顺式加氢方式进行,C―S键断裂开环时所需活化能最高,是反应的限速步骤.此外,与单一Au(111)面及Pd(111)面相比,Au/Pd(111)双金属表面限速步骤的反应能垒最低,表明AuPd双金属催化剂比Au、Pd单金属催化剂更有利于噻吩加氢脱硫反应的进行.  相似文献   

9.
采用密度泛函理论(DFT)计算了Pd(111)表面含有N(N=1-4)个Au原子数目时的表面形成能,选取最优构型进一步研究了噻吩在Au/Pd(111)双金属表面的吸附模式及加氢脱硫反应过程. 结果表明:当Pd(111)表面含有1个Au原子时,其形成能最低. 在Au/Pd(111)双金属表面噻吩初始吸附于Pd-Hcp-30°位时,其构型最稳定. 在各加氢脱硫过程中,反应总体均放出热量. 对于直接脱硫机理,其所需活化能较低,但脱硫产物较难控制;对于间接脱硫机理,反应最有可能按照顺式加氢方式进行,C―S键断裂开环时所需活化能最高,是反应的限速步骤. 此外,与单一Au(111)面及Pd(111)面相比,Au/Pd(111)双金属表面限速步骤的反应能垒最低,表明AuPd双金属催化剂比Au、Pd单金属催化剂更有利于噻吩加氢脱硫反应的进行.  相似文献   

10.
We present a multiscale modeling approach for studying interactions of organic molecules with metal surfaces in explicit water. The approach is based on combining adsorption energies of isolated molecules on transition metal surfaces calculated by ab initio density functional methods and classical molecular dynamics simulations using atomistically detailed force fields. The interaction of benzene with Ni(111) and Au(111) surfaces was studied. It is shown that a strong affinity of water for the hydrophilic surfaces makes benzene adsorption on Au thermodynamically unfavorable, while on Ni there is no preference. The work presented here serves as a first step in modeling the interactions of larger organic molecules with metal surfaces.  相似文献   

11.
1-Propanethiol is chosen as a model alkanethiol to probe detailed mechanisms of the self-assembled monolayer (SAM) formation at aqueous/Au(111) interfaces. The assembly processes, including initial physi- and chemisorption, pit formation, and domain growth, were recorded into movies in real-time with high resolution by in situ scanning tunneling microscopy (STM) under potential control. Two major adsorption steps were disclosed in the propanethiol SAM formation. The first step involves weak interactions accompanied by the lift of the Au(111) surface reconstruction, which depends reversibly on the electrochemical potentials. The second step is chemisorption to form a dense monolayer, accompanied by formation of pits as well as structural changes in the terrace edges. Pits emerged at the stage of the reconstruction lift and increased to a maximum surface coverage of 4.0 +/- 0.4% at the completion of the SAM formation. Well-defined triangular pits in the SAM were found on the large terraces (more than 300 nm wide), whereas few and small pinholes appeared at the terrace edge areas. Smooth edges were converted into saw-like structural features during the SAM formation, primarily along the Au(111) atomic rows. These observations suggest that shrinking and rearrangement of gold atoms are responsible for both formation of the pits and the shape changes of the terrace edges. STM images disclose a (2 square root 3 x 3)R30 degrees periodic lattice within the ordered domains. Along with electrochemical measurements, each lattice unit is assigned to contain four propanethiol molecules exhibiting different electronic contrasts, which might originate in different surface orientations of the adsorbed molecules.  相似文献   

12.
赵新飞  陈浩  吴昊  王睿  崔义  傅强  杨帆  包信和 《物理化学学报》2018,34(12):1373-1380
利用NO2或O2作为氧化剂,研究了氧化锌在Au(111)和Cu(111)上的生长和结构。NO2表现了更好的氧化性能,有利于有序氧化锌纳米结构或薄膜的生长。在Au(111)和Cu(111)这两个表面上,化学计量比氧化锌都形成非极性的平面化ZnO(0001)的表面结构。在Au(111)上,NO2气氛下室温沉积锌倾向于形成双层氧化锌纳米结构;而在更高的沉积温度下,在NO2气氛中沉积锌则可同时观测到单层和双层氧化锌纳米结构。O2作为氧化剂时可导致形成亚化学计量比的ZnOx结构。由于铜和锌之间的强相互作用会促进锌的体相扩散,并且铜表面可以被氧化形成表面氧化物,整层氧化锌在Cu(111)上的生长相当困难。我们通过使用NO2作为氧化剂解决了这个问题,生长出了覆盖Cu(111)表面的满层有序氧化锌薄膜。这些有序氧化锌薄膜表面显示出莫尔条纹,表明存在一个ZnO和Cu(111)之间的莫尔超晶格。实验上观察到的超晶格结构与最近理论计算提出的Cu(111)上的氧化锌薄膜结构相符,具有最小应力。我们的研究表明,氧化锌薄膜的表界面结构可能会随氧化程度或氧化剂的不同而变化,而Cu(111)的表面氧化也可能影响氧化锌的生长。当Cu(111)表面被预氧化成铜表面氧化物时,ZnOx的生长模式会发生变化,锌原子会受到铜氧化物晶格的限域形成单位点锌。我们的研究表明了氧化锌的生长需要抑制锌向金属基底的扩散,并阻止亚化学计量比ZnOx的形成。因此,使用原子氧源有利于在Au(111)和Cu(111)表面上生长有序氧化锌薄膜。  相似文献   

13.
The study of heterodentate molecules adsorbed on metal electrodes provides an opportunity to expand the functionality of modified surfaces while offering insights into the surface and intramolecular electronic interactions of organic adsorbates. The adsorption of 2-(2'-thienyl)pyridine, a molecule containing both pyridine and thiophene moieties, on a Au(111) electrode is reported. Adsorption was characterized by electrochemistry in neutral and basic aqueous electrolyte and was compared to that of pyridine. The aqueous electrochemistry of thiophene on Au(111) was also characterized for comparison purposes. At negative potentials, in the presence of 2-(2'-thienyl)pyridine, a diffuse, pi-bonded monolayer was formed, and a phase transition to a close-packed N- and/or S-bonded configuration was observed near -0.4 V in a 1 mM solution of adsorbate, similar to that seen in pyridine on Au(111). The thiophene-like oxidative dimerization of the molecule was confirmed at positive potentials using in situ fluorescence microscopy by comparison with the spectrum of the chemically synthesized dimer.  相似文献   

14.
Alkanethiol self-assembled monolayers on Au(111) are widely studied, yet the exact nature of the sulfur-gold bond is still debated. Recent studies suggest that Au(111) is significantly reconstructed, with alkanethiol molecules binding to gold adatoms on the surface. These adatoms are observed using scanning tunneling microscopy before and after removing the organic monolayer with an atomic hydrogen beam. Upon monolayer removal, changes in the gold substrate are seen in the formation of bright, triangularly shaped islands, decreasing size of surface vacancy islands, and faceting of terrace edges. A 0.143 +/- 0.033 increase in gold coverage after monolayer removal shows that there is one additional gold adatom for every two octanethiol molecules on the surface.  相似文献   

15.
We have addressed here electron transfer (ET) of Pyrococcus furiosus ferredoxin (PfFd, 7.5 kDa) in both homogeneous solution using edge plane graphite (EPG) electrodes and in the adsorbed state by electrochemistry on surface-modified single-crystal Au111 electrodes, This has been supported by surface microscopic structures of PfFd monolayers, as revealed by scanning tunneling microscopy under potential control (in situ STM). Direct ET between PfFd in phosphate buffer solution, pH 7.9, and EPG electrodes is observed in the presence of promoters. Neomycin gives rise to a pair of redox peaks with a formal potential of ca -430 mV (vs SCE), corresponding to [3Fe-4S]1+/0. The presence of an additional promoter, which can be propionic acid, alanine, or cysteine, induces a second pair of redox peaks at approximately -900 mV (vs SCE) arising from [3Fe-4S]0/1-. A robust neomycin-PfFd complex was detected by mass spectrometry. The results clearly favor an ET mechanism in which the promoting effect of small organic molecules is through formation of promoter-protein complexes. The interaction of PfFd with small organic molecules in homogeneous solution offers clues to confine the protein on the electrode surface modified by the same functional group monolayer and to address diffusionless direct electrochemistry, as well as surface microstructures of the protein monolayer. PfFd molecules were found to assemble on either mercaptopropionic acid (MPA) or cysteine-modified Au111 surfaces in stable monolayers or submonolayers. Highly ordered (2 radical 3 x 5)R30 degrees cluster structures with six MPA molecules in each cluster were found by in situ STM. Individual PfFd molecules on the MPA layer are well resolved by in situ STM. Under Ar protection reversible cyclic voltammograms were obtained on PfFd-MPA/Au111 and PfFd-cysteine/Au111 electrodes with redox potentials of -220 and -201 mV (vs SCE), respectively, corresponding to the [Fe3S4]1+/0 couple. These values are shifted positively by 200 mV relative to homogeneous solution due to interactions between the promoting layers and the protein molecules. Possible mechanisms for such interactions and their ET patterns are discussed.  相似文献   

16.
Three different single crystals, Au(111), Au(332), and Au(331), were used as the substrate for palladium deposition in the underpotential deposition (UPD) regime. The Au(111) single crystal was used for control experiments to compare the behavior of the vicinal surfaces. Cyclic voltammetry in 0.1 M sulfuric acid solution, as well as electrochemical impedance spectroscopy (EIS) were used to study the hydrogen adsorption on the Pd thin films. Our results suggest that the voltammetric peaks at approximately 0.3 V versus the reversible hydrogen electrode (RHE) are related to the adsorption of hydrogen at large palladium terraces, and that at least two adjacent Pd rows are needed in order for the adsorption to take place. Further cycling to more positive potentials leads to the oxidation and slow dissolution of the Pd film. The behavior of the oxidation cycles is explained in terms of a higher stability of Pd at the steps.  相似文献   

17.
Adlayers of cobalt(II) 5,10,15,20-tetrakis(alpha,alpha,alpha,alpha-2-pivalamidophenyl)porphyrin (CoTpivPP) were prepared by immersing either Au(111) or Au(100) substrate in a benzene solution containing CoTpivPP molecules, and they were investigated in 0.1 M HClO4 and 0.1 M H2SO4 by cyclic voltammetry and in situ scanning tunneling microscopy (STM). The adlayer structure and electrochemical properties of CoTpivPP are compared to those of 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (CoTPP). Characteristic nanobelt arrays consisting of CoTpivPP molecules were produced on both Au(111) and Au(100) surfaces. The stability of the nanobelt arrays was controlled by manipulating the electrode potential. On the other hand, the formation of nanobelt arrays consisting of O2-adducted CoTpivPP molecules depended upon the crystallographic orientation of Au. The state of O2 trapped in the cavity of CoTpivPP was distinctly observed in STM images as a bright spot in the nanobelt array formed on reconstructed Au(100)-(hex) surface, but not on Au(111) surface. This result suggests that the arrangement of underlying Au atoms plays an important role in the formation of nanobelt arrays with the sixth ligand coordination.  相似文献   

18.
Evaporated gold films are frequently used as substrates for the study of biomolecular adsorbates, nanoparticle systems, amd partial and full monolayer films. These studies often benefit from a predeposition cleaning of the surface that removes adventitiously adsorbed material from laboratory contaminants. Scanning tunneling microscopy (STM) is used in this study to explore the microscopic consequences of two pretreatment protocols used in literature reports of self-assembled monolayers, based on sulfochromic and piranha acid solutions. These measurements show that treatment of the Au/mica surface with piranha acid can lead to extensive and uncontrolled etching of the surface and severe disruption of the surface topography; extended exposure causes the precipitation of crystallites on the surface that are highly mobile during STM imaging processes. Exposure of Au/mica surfaces to sulfochromic acid leads to the formation of permanent etch pits of the surface that are exclusively one Au layer deep; extended exposure leads to progressive etching and oxidation of the surface, ultimately leading to the formation of 0.33-0.36 nm high islands on the otherwise flat Au/mica surface. The piranha acid solutions are significantly more likely to cause the Au film to delaminate from the mica support than are the sulfochromic acid solutions. These results show that sulfochromic surface preparation is a direct and reliable method for the elimination of organic residues from Au(111)-textured surfaces, while causing a minimum of structural and chemical surface damage.  相似文献   

19.
The structure of molecular monolayers formed at the interface between atomically flat surfaces and a solution of free-base meso-tetradodecylporphyrins (H2Ps) was examined by scanning tunneling microscopy (STM) at the liquid/solid interface. On the surface of graphite (HOPG), H2Ps form a well-ordered monolayer characterized by an oblique unit cell. On Au(111), H2Ps form a self-organized monolayer comprised of two distinct domain types. In both types of domains, the density of the porphyrin cores is increased in comparison to the arrangement observed on HOPG. Also, high-resolution STM images reveal that, in contrast to what is observed on HOPG, physisorption on Au(111) induces a distortion of the porphyrin macrocycle out of planarity. By using X-ray photoelectron spectroscopy, we demonstrate that this is likely to be due to the coordination of the lone pairs of the iminic (-C=N-) nitrogen atoms of the porphyrin macrocycle to Au(111).  相似文献   

20.
The self-assembled monolayers (SAMs) of normal alkanes (n-C(n)H(2n+2)) with different carbon chain lengths (n=14-38) in the interfaces between alkane solutions (or liquids), and the reconstructed Au (111) surfaces have been systematically studied by means of scanning tunneling microscopy (STM). In contrast to previous studies, which concluded that some n-alkanes (n=18-26) can not form well-ordered structures on Au (111) surfaces, we observed SAM formations for all these n-alkanes without any exceptions. We find that gold reconstruction plays a critical role in the SAM formation. The alkane monolayers adopt a lamellar structure in which the alkane molecules are packed side-by-side, to form commensurate structures with respect to the reconstructed Au (111) surfaces. The carbon skeletons are found to lie flat on the surfaces, which is consistent with the infrared spectroscopic studies. Interestingly, we find that two-dimensional chiral lamellar structures form for alkanes with an even carbon number due to the specific packing of alkane molecules in a tilted lamella. Furthermore, we find that the orientation of alkane molecules deviates from the exact [011] direction, because of the intermolecular interactions among the terminal methyl groups of neighboring lamellae; this results in differences of molecular orientation between mirror structures of adjacent zigzag alkane lamellae. Structural models have been proposed, that shed new light on monolayer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号