首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability (p dark ~ 10?7).  相似文献   

2.

Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.

  相似文献   

3.
孙伟  尹华磊  孙祥祥  陈腾云 《物理学报》2016,65(8):80301-080301
非正交编码协议和诱骗态方法可以有效地抵御光子数分离攻击. 由于相干叠加态中单光子成分高达90%, 常作为单光子量子比特的替代出现, 用于量子信息过程处理和计算. 本文结合非正交编码协议和诱骗态方法提出一种新的量子密钥分发方案, 光源采用相干叠加态, 推导了单光子的密钥生成速率、计数率下限和误码率的上限, 利用Matlab 模拟了无限多诱骗态情况下和有限多诱骗态情况下密钥生成速率和传输距离的关系, 得出该方案可以提升密钥生成速率并且提高安全传输距离, 验证了该方案可以进一步提高量子密钥分发系统的性能.  相似文献   

4.
The extreme admissible error probability at the receiving end to which the secure key distribution is possible has been found. This result takes into account all possible attacks on the distributed key, including those that involve large quantum memory and the capability of an eavesdropper to perform collective measurements simultaneously over the entire transmitted sequence of quantum states. The critical error is independent of the parameters of a particular attack and is determined only in terms of the overlapping degree ε = |〈u1|u0〉¦ of information states and the fundamental functions of classical and quantum information theories. The latter functions are the capacity H(Q) of a classical binary communication channel and classical capacity \(\bar C(\varepsilon )\) of a binary quantum communication channel. The key compression degree after error correction is also expressed in terms of only the classical capacity \(\bar C(\varepsilon )\) of the quantum communication channel.  相似文献   

5.
Shurupov  A. P.  Kulik  S. P. 《JETP Letters》2008,88(9):636-640

The operational inclusion of the subclass of entangled states in a quantum key distribution protocol based on biphoton-ququarts is analyzed. Four Bell states are proposed to be used as test states to estimate the error level, leaving the subclass of 12 factorized polarization states of biphotons as information states. The elementary analysis of two strategies for an attack on a quantum communication channel, as well as of the key generation rate, has been performed.

  相似文献   

6.
For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.  相似文献   

7.
Whereas quantum cryptography ensures security by virtue of complete indistinguishability of nonorthogonal quantum states, attenuation in quantum communication channels and the unavailability of single-photon sources present major problems. In view of these difficulties, the security of quantum cryptography can change from unconditional to conditional. Since the restrictions imposed by nonrelativistic quantum mechanics and used to formulate key distribution protocols have been largely exhausted, new principles are required. The fundamental relativistic causality principle in quantum cryptography can be used to propose a new approach to ensuring unconditional security of quantum cryptosystems that eliminates the aforementioned difficulties. Quantum cryptosystems of this kind should obviously be called relativistic. It is shown that relativistic quantum cryptosystems remain unconditionally secure: first, attenuation in a quantum communication channel can only reduce the key generation rate, but not the security of the key; second, the source may not generate pure single-photon states, and a nonzero single-photon probability will suffice. The scheme remains secure even if the contribution of a single-photon component is arbitrarily small. This formally implies that a state may be characterized by an arbitrarily large mean photon number. The single-photon probability affects only the key generation rate, but not security.  相似文献   

8.
诱惑态量子密钥分配系统中统计涨落的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
焦荣珍  唐少杰  张弨 《物理学报》2012,61(5):50302-050302
针对实用的量子密钥分配(QKD)系统是基于强衰减的弱激光脉冲作为单光子源, 光子数分束攻击极大限制了通信双方在非理想条件下QKD的传输距离和密钥生成率,采用大数定律对诱惑态协议中单光子的计数率、单光子增益和误码率分别进行统计涨落分析, 利用双诱惑态比较了1310 nm和1550 nm条件下,编码脉冲的长度为(N = 106-N = 1012)实际QKD协议中密钥的生成率与安全传输距离之间的关系、安全传输距离随编码长度的变化的关系, 得出脉冲编码长度增大到N = 1012时,密钥的最大安全传输距离为135 km.  相似文献   

9.
Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q c ≈ 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation $H(Q_c ) = \bar C(\rho )/2$ , where ρ is the density matrix of the input ensemble, $\bar C(\rho )$ is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.  相似文献   

10.
Quantum cryptography involves the fundamental question of the existence of secure protocols of quantum key distribution at any length of a communication channel (at any losses in it). A remarkable feature and novelty of the proposed protocol is that it ensures dual control; first, the intensity of a reference (intense) quantum state is controlled classically before the comparison (measurement) of coherent states from different time windows, and, second, the loss of coherence of a state is detected by interference measurements of an information quantum state and the reference quantum state tested against the conservation of the intensity. Thus, this is the only existing protocol stable to any losses in the communication channel. The length of the communication channel is limited only by dark noise in detectors.  相似文献   

11.
The security of keys in quantum cryptography is based on fundamental quantum mechanical exclusions (the exclusion of cloning and copying of nonorthogonal quantum states. The physical type of a quantum object that carries information (photon, electron, atom, etc.) is insignificant; only its state vector is important. In relativistic quantum cryptography for open space, both the time of the information carrier (photon that propagates with the extremely allowable velocity in a vacuum) and its quantum state are of fundamental importance. Joint fundamental constraints that are dictated by both special relativity and quantum mechanics on the discrimination of nonorthogonal quantum states allow one to formulate fundamentally new key distribution protocols that are stable against any attacks on a key and guarantee the security of keys for a nonstrictly single-photon source and any losses in the communication channel. Although this protocol is a real-time protocol in the Minkowski space-time, where the attack to the communication channel is detected by the delay of eavesdropper measurement results, the protocol does not require clock synchronization on the transmitter and receiver sides.  相似文献   

12.
One of the basic results of classical information theory is that error-free information transmission is possible even through an imperfect binary communication channel with noise up to an error of Q c = 1/2. There is a fundamental and applied question of whether quantum-mechanical constraints can ensure error-free classical-information transmission with quantum states and, moreover, guarantee the security of distributed keys up to the theoretical limit in the error Q c. It has been shown that the secure key distribution is possible up to the error Q c in the asymptotic limit of a large number of bases.  相似文献   

13.
A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In the absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.  相似文献   

14.
We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10??6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.  相似文献   

15.
Quantum key exchanges using weak coherent (Poissonian) single-photon sources are open to attack by a variety of eavesdropping techniques. Quantum-correlated photon sources provide a means of flagging potentially insecure multiple-photon emissions and thus extending the secure quantum key channel capacity and the secure key distribution range. We present indicative photon-counting statistics for a fully correlated Poissonian multibeam photon source in which the transmitted beam is conditioned by photon number measurements on the remaining beams with non-ideal multiphoton counters. We show that significant rejection of insecure photon pulses from a twin-beam source cannot be obtained with a detector having a realistic quantum efficiency. However quantum-correlated (quadruplet or octuplet) multiplet photon sources conditioned by high efficiency multiphoton counters could provide large improvements in the secure channel capacity and the secure distribution range of high loss systems such as those using the low earth orbit satellite links proposed for global quantum key distribution. Received 14 July and Received in final form 20 November 2001  相似文献   

16.
A principally new approach ensuring secure key distribution via an open quantum communication channel is proposed. In contrast to the existing schemes, in which the security is based upon special properties of nonorthogonal states in the Hilbert space, the security of the proposed scheme relies on a spacetime structure of states and on certain constraints imposed by special relativity. Using these factors, it is possible to provide for secure key transmission using practically arbitrary quantum states.  相似文献   

17.
A continuous variable quantum key distribution protocol with entanglement swapping of quasi-Bell entangled coherent states is proposed. As the preliminary step, a sender shares quasi-Bell entangled coherent states with a receiver. After their measurements to distinguish the cases of a zero response, a nonzero even-photon response and an odd-photon response, two legitimate participants fulfill the task of key distribution. The correlations resulting from entanglement swapping of quasi-Bell entangled coherent states and the order rearrangement of transmitted states provide the possibility to protect secret key distribution. In the ideal channel, the success probability increases with the amplitude of the coherent state, and approaches unity when the amplitude of the coherent state is larger than two. However, in the loss channel, the decoherence will introduce error in the generated key, and the error rate increases with the amplitude of the coherent state. When the amplitude of the coherent state is smaller than 0.2 (or so), the error rate approaches zero, although the success probability is less than 0.5 in this case.  相似文献   

18.
Measurement device-independent quantum key distribution(MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes.Increasing each individual photon's channel capacity is an efficient way to increase the key generation rate, and high-dimensional(HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom(DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure,even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.  相似文献   

19.
A quantum key distribution protocol with nonorthogonal basis states is a generalization of the known BB84 key distribution protocol. The critical error and length of a secure key have been determined for the protocol with nonorthogonal basis states for an arbitrary angle between information states. An explicit optimal attack on the distributed key has been constructed; this attack maximizes eavesdropper information at a given error on the receiver side.  相似文献   

20.
研究了对称噪声信道下的量子密钥分配(Quantum Key Distribution,QKD)过程,并得到了其误码率和信道保真度的关系式。基于量子态的局域区分原理,我们提出了使用“多纠缠态”进行噪声信道下的密钥分配的新方案。应用这个新方案,我们可以获得和在理想无噪声信道下使用最大纠缠态(四个Bell态之一)进行QKD一样好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号