首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative strengths of amide NH...O- and carboxyl OH...O- hydrogen bonds were investigated via conformational analysis of succinamate and monohydrogen succinate anions with the aid of vicinal proton-proton NMR couplings and B3LYP DFT quantum mechanical calculations for a variety of solvents. New experimental results for succinamate are compared with those obtained from previous studies of monohydrogen succinate. While some computational results for monohydrogen succinate were published previously, the results contained herein are the product of a more powerful methodology than that used earlier. The experimental results clearly show that intramolecular hydrogen-bond formation is more favored in aprotic solvents than in protic solvents for both molecules. Furthermore, the preference of the succinate monoanion for the gauche conformation is much stronger in aprotic solvents than that of succinamate, indicating that the OH...O- hydrogen bond is substantially stronger than its NH...O- counterpart, despite the approximately 5 kcal cost for formation of the E configuration of the carboxyl group needed to make an intramolecular hydrogen bond. The actual energy differences between formation of internal hydrogen bonds for monohydrogen succinate and succinamate anion were estimated by comparison of the relative values of K1 of the respective acids in water and DMSO by a procedure first developed by Westheimer. Recent theoretical work with succinamate highlights the necessity of considering substituent orientational degrees of freedom to understand the conformational equilibria of the central CH2-CH2 torsions in disubstituted ethanes. Similar methodology is applied here to succinic acid monoanion, by mapping potential-energy surfaces with respect to the CH2-CH2 torsional, carboxyl-substituent rotational, and carboxyl-proton E/Z isomeric degrees of freedom. Boltzmann populations were compared with gauche populations estimated from the experimentally determined coupling constants. The quantum mechanical results for succinamate show a much weaker tendency toward hydrogen bonding than for the succinic acid monoanion. However, the theoretical methods employed appear to substantially overestimate contributions from intramolecularly hydrogen-bonded structures for the succinic acid monoanion when compared with experimental results. Natural bond orbital analysis, applied to the quantum mechanical wave functions of fully optimized gauche and trans structures, showed a strong correlation between the population of amide sigma*(N-H) and carboxyl sigma*(O-H) antibonding orbitals and apparent hydrogen-bonding behavior.  相似文献   

2.
Through a fit to methanol CH overtone data, a previously developed 4-dimensional torsion-vibration Hamiltonian is extended to high CH stretch excitation as well as to high torsional excitation. The strength of the torsion-vibration coupling is found to increase with CH stretch excitation. Systematic patterns of near degeneracy (3-, 4-, and 6-fold) are found in different regions of quantum number space. In the region of the CH fundamentals, an approximate a diabatic separation of the torsion (slow degree of freedom) from the CH stretches (fast degrees of freedom) accounts for the pattern of the energy levels and for the signs of the torsional tunneling splittings. For the higher CH overtones (v(CH) > or = 4), a diabatic representation accounts for the torsional structure obtained from the fully coupled calculation and for certain trends found in the pattern of the energy levels.  相似文献   

3.
When the quantum character of proton transfer is taken into account, the intrinsic slowness of self-exchange proton transfer at carbon appears as a result of its nonadiabatic character as opposed to the adiabatic character of proton transfer at oxygen and nitrogen. This difference is caused by the lesser polarity of C-H bonds as compared to that of O-H and N-H bonds. Besides solvent and heavy-atom intramolecular reorganizations, the kinetics of the reaction are consequently governed at the level of a pre-exponential term by proton tunneling through the barrier. These contrasting behaviors are illustrated by an analysis of the CH(3)H + (-)CH(3), H(2)O + OH(-), and (+)NH(4) + NH(3) self-exchange reactions. The effect of electron-withdrawing substituents and the case of cation radicals are discussed within the same framework taking the O(2)NCH(2)H + CH(2)=NO(2)(-) and (+.)H(2)NCH(2)H + (.)CH(2)NH(2) as examples. Illustrated by the CH(2)=CH-CH(2)H + (-)CH(2)-CH=CH(2) couple, it is shown that the "imbalanced character of the transition state" is related to heavy-atom intramolecular reorganization. Combination of these various effects is finally analyzed, taking the O(2)N-CH(2)=CH-CH(2)H + CH(2)=CH-CH=NO(2)(-) and (+.)H(2)N-CH(2)=CH-CH(2)H + (.)CH(2)-CH=CH(2)-NH(2) couples as examples.  相似文献   

4.
Quantum dynamical simulations of vibrational spectroscopy have been carried out for glycine dipeptide (CH(3)-CO-NH-CH(2)-CO-NH-CH(3)). Conformational structure and dynamics are modeled in terms of the two Ramachandran dihedral angles of the molecular backbone. Potential energy surfaces and harmonic frequencies are obtained from electronic structure calculations at the density functional theory (DFT) [B3LYP/6-31+G(d)] level. The ordering of the energetically most stable isomers (C(7) and C(5)) is reversed upon inclusion of the quantum mechanical zero point vibrational energy. Vibrational spectra of various isomers show distinct differences, mainly in the region of the amide modes, thereby relating conformational structures and vibrational spectra. Conformational dynamics is modeled by propagation of quantum mechanical wave packets. Assuming a directed energy transfer to the torsional degrees of freedom, transitions between the C(7) and C(5) minimum energy structures occur on a sub-picosecond time scale (700...800 fs). Vibrationally nonadiabatic effects are investigated for the case of the coupled, fundamentally excited amide I states. Using a two state-two mode model, the resulting wave packet dynamics is found to be strongly nonadiabatic due to the presence of a seam of the two potential energy surfaces. Initially prepared adiabatic vibrational states decay upon conformational change on a time scale of 200...500 fs with population transfer of more than 50% between the coupled amide I states. Also the vibrational energy transport between localized (excitonic) amide I vibrational states is strongly influenced by torsional dynamics of the molecular backbone where both enhanced and reduced decay rates are found. All these observations should allow the detection of conformational changes by means of time-dependent vibrational spectroscopy.  相似文献   

5.
The vibrational frequency of the amide I transition of peptides is known to be sensitive to the strength of its hydrogen bonding interactions. In an effort to account for interactions with hydrogen bonding solvents in terms of electrostatics, we study the vibrational dynamics of the amide I coordinate of N-methylacetamide in prototypical polar solvents: D2O, CDCl3, and DMSO-d6. These three solvents have varying hydrogen bonding strengths, and provide three distinct solvent environments for the amide group. The frequency-frequency correlation function, the orientational correlation function, and the vibrational relaxation rate of the amide I vibration in each solvent are retrieved by using three-pulse vibrational photon echoes, two-dimensional infrared spectroscopy, and pump-probe spectroscopy. Direct comparisons are made to molecular dynamics simulations. We find good quantitative agreement between the experimentally retrieved and simulated correlation functions over all time scales when the solute-solvent interactions are determined from the electrostatic potential between the solvent and the atomic sites of the amide group.  相似文献   

6.
The rotational freedom of the carbon-carbon single bonds of 1,2-disubstituted ethanes affords the possibility of these compounds existing as a rapidly interconverting mixture of conformers in solution. The conformational preferences of one such compound, 3-(trimethylsilyl)propionic acid, and its anion were studied in water, dimethyl sulfoxide, methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, tetrahydrofuran, and toluene with 1H NMR spectroscopy. The conformational preferences were determined from the vicinal proton-proton coupling constants between the hydrogen nuclei of the CH(2)CH(2) group with the aid of the Altona equations to derive the equilibrium anti and gauche percentages of rotamers from the averaged NMR-time scale couplings. Conformational analyses of 4,4-dimethylpentanoic acid and its anion as well as 2-(trimethylsilyl)ethanesulfonate anion were also conducted to compare the relative structural influences on the conformational preferences of silicon and carbon.  相似文献   

7.
The structure of the conformationally flexible acetyl fluoride molecule (CH3CFO and CD3CFO) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was calculated by different quantum-chemical methods (RHF, UHF, MP2, CASSCF). The equilibrium geometric parameters and harmonic vibrational frequencies of the molecules in these electronic states were estimated. The calculations demonstrated that the electronic excitation causes considerable conformational changes involving the rotation of the CH3(CD3) top and a substantial deviation of the CCFO carbonyl fragment from planarity. For large-amplitude vibrations, namely, for the torsional vibration in the S0 state and the torsional and inversion (nonplanar carbonyl fragment) vibrations in the T1 and S1 states, the quantum-mechanical problems were solved in one-dimensional (1D) and two-dimensional (2D) approximations. The results of calculations are in good agreement with experimental data.  相似文献   

8.
Six new ferrocene alkyl-benzoaza-15-crown-5 molecules with different alkyl spacer lengths were synthesized and investigated by voltammetry in acetonitrile. Their mean potentials (E(o)') were more negative than that of ferrocene. The changes were greater for the bis-substituted ligands than for the monosubstituted ones. Increasing the alkyl spacer length shifted E(o)' negatively from -CH2- to -(CH2)2- but positively from -(CH2)2- to -(CH2)4-. This unusual variation is attributed to the combined electron donating and withdrawing influences and also the steric effect from the substituents on the ferrocene moiety. Analyses of the potentials of the molecules and their fully protonated forms suggested intramolecular electrostatic signaling through not only the space but also the alkyl chain which is usually considered to be an insulator for through-bond communication. Diffusion coefficients with insignificant differences between the receptors and their fully protonated forms were derived from cyclic voltammograms, suggesting insignificant further conformational variation upon protonation.  相似文献   

9.
Mixed quantum-classical atomistic simulations have been carried out to investigate the mechanistic details of excited state intramolecular electron transfer in a betaine-30 molecule in acetonitrile. The key electronic degrees of freedom of the solute molecule are treated quantum mechanically using the semiempirical Pariser-Parr-Pople Hamiltonian, including the solvent influence on electronic structure. The intramolecular vibrational modes are also treated explicitly at a quantum level, with the remaining elements treated classically using empirical potentials. The electron-transfer rate, corresponding to S1 --> S0 relaxation, is evaluated via time-dependent perturbation theory with the explicit inclusion of the dynamics of solvation and intramolecular conformation. The calculations reveal that, while solvation dynamics is critical to the rate, the intramolecular torsional dynamics also plays an important role. The importance of the use of multiple high-frequency quantum modes is also discussed.  相似文献   

10.
N-substituted dppa ligands Ph2P-NR-PPh2 [R = -CH2CH2SCH2C6H5 (1), -CH2CH2S(CH2)5CH3 (2), -(CH2)9CH3 (3), -C6H5 (4)] were used for the synthesis of cis-[PtCl2{Ph2PN(R)PPh2}] complexes [R = -CH2CH2SCH2C6H5 (5), -CH2CH2S(CH2)5CH3 (6), -(CH2)9CH3 (7), -C6H5 (8)] and heterotrinuclear clusters of formula [PtCo2(CO)7{Ph2PN(R)PPh2}] [R = -CH2CH2SCH2C6H5 (9), -CH2CH2S(CH2)5CH3 (10), -(CH2)9CH3 (11), -C6H5 (12)]. The presence of relatively bulky substituents on N resulted in a higher chelating power of the ligands. The thermodynamic study of the equilibrium between the chelate and the bridged forms of clusters 9-11 showed that the bridged form is favoured by enthalpic factors whereas entropic factors favour chelation. The structures of 5 and 9 were determined by single crystal X-ray diffraction.  相似文献   

11.
12.
The high pyramidalization of the bicyclic amide nitrogen found in the crystal structure of a dipeptide incorporating (1S,2S,4R)-N-benzoyl-2-phenyl-7-azabicyclo[2.2.1]heptane-1-carboxylic acid has been investigated using quantum mechanical calculations. More specifically, a bottom-up strategy based on the study of model molecules of progressive complexity has been used. First, an appropriate quantum mechanical method has been selected by examining the distortion of the amide bond in three simple model molecules. Next, the amide distortion induced by the norbornane ring has been evaluated by considering three different 7-azabicyclo[2.2.1]heptane amides. After this, the suitability of quantum mechanical calculations to predict the effect of the substituents on the pyramidalization of the bicyclic amide nitrogen has been investigated by comparing experimental and theoretical parameters for a number of compounds. Finally, the factors responsible for amide distortion in the (1S,2S,4R)-N-benzoyl-2-phenyl-7-azabicyclo[2.2.1]heptane-1-carboxylic acid derivative have been elucidated using a hierarchical approach. For this purpose, several derivatives were generated by removing or modifying the substituents attached to the 7-azanorbornane system. Results have been discussed in terms of intramolecular specific interactions.  相似文献   

13.
The conformational equilibrium of methyl 4‐nitrophenyl sulfoxide (MNPSO) was experimentally investigated in the gas phase by using microwave spectroscopy and in isotropic and nematic liquid‐crystal solutions, in which the solvents are nonaqueous and aprotic, by using NMR spectroscopy; moreover, it was theoretically studied in vacuo and in solution at different levels of theory. The overall set of results indicates a significant dependence of the solute conformational distribution on the solvent dielectric permittivity constant: when dissolved in low‐polarity media, the most stable conformation of MNPSO proved to be strongly twisted with respect to that in more polar solvents, in which the conformational distribution maximum essentially coincides with that obtained in the gas phase. We discuss a possible explanation of this behavior, which rests on electrostatic solute–solvent interactions and is supported by calculations of the solute electric dipole moment as a function of the torsional angle. This function shows that the least polar conformation of MNPSO is located at a twist angle close to that of the conformational distribution maximum found in less‐polar solvents. This fact, associated with a relatively flat torsional potential, can justify the stabilization of the twisted conformation by the less‐polar solvents.  相似文献   

14.
A series of amino alcohol- and diamino-cis-decalins were synthesized and their conformational properties investigated. The equilibrium distributions of the conformational isomers were measured via NMR spectroscopy. The equilibrium ratios depend on the position of the substituents on the decalin ring system and the solvent. The 7-substituted 1-aza-cis-decalins are more likely to adopt the N-in form than the 5-substituted analogues. The N-in form is generally favored in nonpolar solvents, while the N-out form is favored in polar solvents. Complexation with LiClO4 and Et2Zn alters the equilibrium to favor the N-in decalin conformer. Both conformers coordinate lithium ions such that "on/off" conformational switching is not observed for these decalins. Comparison of the results with complexation studies of (-)-sparteine allows the criteria for an ideal "on/off" conformational switch to be defined.  相似文献   

15.
The molecule 2-methylmalonaldehyde (2-MMA) exists in the gas phase as a six-membered hydrogen-bonded ring [HO-CH=C(CH(3))-CH=O] and exhibits two large-amplitude motions, an intramolecular hydrogen transfer and a methyl torsion. The former motion is interesting because the transfer of the hydrogen atom from the hydroxyl to the carbonyl group induces a tautomerization in the ring, i.e., HO-CH=C(CH(3))-CH=O-->O=CH-C(CH(3))=CH-OH, which then triggers a 60 degrees internal rotation of the methyl group attached to the ring. The microwave spectra of 2-MMA-d0, 2-MMA-d1, and 2-MMA-d3 were studied previously by Sanders [J. Mol. Spectrosc. 86, 27 (1981)], who used a rotating-axis-system program for two-level inversion problems to fit rotational transitions involving the nondegenerate A(+) and A(-) sublevels to several times their measurement uncertainty. A global fit could not be carried out at that time because no appropriate theory was available. In particular, observed-minus-calculated residuals for the E(+) and E(-) sublevels were sometimes as large as several megahertz. In the present work, we use a tunneling-rotational Hamiltonian based on a G(12) (m) group-theoretical formalism to carry out global fits of Sanders' 2-MMA-d0 and 2-MMA-d1 [DO-CH=C(CH(3))-CH=O] spectra nearly to measurement uncertainty, obtaining root-mean-square deviations of 0.12 and 0.10 MHz, respectively. The formalism used here was originally derived to treat the methylamine spectrum, but the interaction between hydrogen transfer and CH(3) torsion in 2-MMA is similar, from the viewpoint of molecular symmetry, to the interaction between CNH(2) inversion and CH(3) torsion in methylamine. These similarities are discussed in some detail.  相似文献   

16.
Diastereomeric derivatives prepared from an amino acid and an amino amide using trichloro s-triazine as a coupling platform are known to produce good chromatographic diastereoselectivity for many amino acid analytes. The chromatographic diastereoselectivity of these derivatives is difficult to rationalize based on the possibility of four possible conformational isomers, which can interconvert by rotation about the C-N bonds between the amino substituents and the triazine ring. The observed diastereoselectivity implicates an unobvious but significant driving force which causes one of several conformations to be favored over the others. Several possibilities are discussed. Intramolecular hydrogen bonding between acid and amide substituents was explored using computer aided molecular modeling. While such hydrogen bonding may be geometrically possible between the amino acid and the amide substituents, it does not explain why derivatives produced from other chiral compounds which are not capable of the same hydrogen bonding interaction nevertheless exhibit substantial diastereoselectivity. Two other more general effects, steric hindrance to solvation and ion pairing, are therefore suggested as possible contributing factors to the chromatographic diastereoselectivity. Based on the conformational equilibrium behavior of related triazine compounds as reported in the literature, either one of these effects could influence the conformation of the diastereomeric derivatives even in the absence of intramolecular hydrogen bonding interactions between the two chiral substituents, and these effects may therefore be a contributing factor for the observed elution order of the diastereomers.  相似文献   

17.
The four-dimensional model Hamiltonian of Wang and Perry [J. Chem. Phys. 109, 10795 (1998)] is used to compare the approximate adiabatic separation of the torsion and CH stretches in methanol to an exact solution of the same Hamiltonian. The adiabatic approximation accounts for the pattern of the energy levels in the lowest torsional states, including the inverted tunneling splittings, but does not account for the pattern of systematic two- and four-fold near degeneracies at high torsional excitation. In the adiabatic basis, the nonadiabatic couplings mix the torsional and vibrational degrees of freedom and hence are a source for intramolecular vibrational redistribution (IVR). These IVR matrix elements are found to decrease by only a factor of 2 or 3 with each higher coupling order, in agreement with the results of Pearman and Gruebele [Z. Phys. Chem. Munich 214, 1439 (2000)]. This gentle scaling behavior, which contrasts with a steeper falloff with coupling order in more rigid molecules, points to a more important role for direct high-order couplings in torsional molecules. In this model, the scaling behavior derives from a single coupling term that is low order in the torsional angular momentum in combination with one-dimensional torsional functions that include contributions from many torsional angular momenta.  相似文献   

18.
The low-lying conformers of N-/O-methylglycine are studied by ab initio calculations at the B3LYP, MP3, and MP4(SDQ) levels of theory with the aug-cc-pVDZ basis set. The conformers having the intramolecular hydrogen bonds N-H...O=C or O-H...N are more stable than the others. Vertical ionization energies for the valence molecular orbitals of each conformer predicted with the electron propagator theory in the partial third-order quasiparticle approximation are in good agreement with the experimental data available in the literatures. The relative energies of the conformers and comparison between the simulated and the experimental photoelectron spectra demonstrate that there are at least three and two conformers of N- and O-methylglycine, respectively, in the gas-phase experiments. The intramolecular hydrogen bonding O-H...N effects on the molecular electronic structures are discussed for the glycine methyl derivatives, on the basis of the ab initio electronic structure calculations, natural orbital bond, and atoms-in-molecules analyses. The intramolecular hydrogen bonding O-H...N interactions hardly affect the electronic structures of the O-NH2-CH2-C(=O)-O-CH3 and alpha-methylated NH2-CH2-C(CH3)OOH conformers, while the similar intramolecular interactions lead to the significantly lower-energy levels of the highest occupied molecular orbitals for the N-(CH3-NH-CH2-COOH) and beta-methylated (NH2-CH2-CH2-COOH) conformers.  相似文献   

19.
The new rhenium(I) bipyridine crown ether receptors 1-4 have been prepared and their ion pair recognition properties examined. The crystal structure of [1.KCl](2).2H(2)O demonstrates that potassium is coordinated by benzo-18-crown-6 and chloride is hydrogen bonded to the amide groups. Receptor 3 extracts solid KCl and KOAc into chloroform via ion pair complexation. NMR and emission titration studies with receptors 1-4 and KCl/KOAc show that cobound potassium enhances anion binding strength by electrostatic and conformational effects. Significant cooperative interactions are observed between the anion and cation sites for host 4 in CH(3)CN. This molecule coordinates potassium to form a 1:1 intramolecular sandwich complex, which preorganizes the host for acetate binding.  相似文献   

20.
trans- and cis-1-(4-Dimethylaminophenyl)-6-(4-nitrophenyl)hex-3-ene-1,5-diynes (trans- and cis-DANE) were synthesized and their photochemical properties were studied. The absorption spectra of trans-DANE red-shifted compared with the parent compound bisphenylethynylethene (BEE) due to intramolecular charge transfer. The fluorescence spectra, Stokes shift, fluorescence lifetime, fluorescence quantum yield, and quantum yield of trans-to-cis photoisomerization of trans-DANE showed strong dependence upon the solvent polarity in the less-polar region. No fluorescence emission from trans-DANE was observed in medium-polar and polar solvents. The quantum yield of cis-to-trans isomerization was almost solvent independent. The donor-acceptor substituents shifted the equilibrium between the trans perpendicular triplet state and the trans planar triplet state to the trans triplet state, and resulted in an increase in the triplet lifetime. Comparison of the photochemical properties of trans-DANE with trans-4-dimethylamino-4'-nitrostilbene (DANS) suggests that trans-DANE is a possible fluorescent probe in the non-polar region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号