首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitation-emission matrices (EEM) of fluorescence of aqueous solutions of humic substances (HS), and sets of EEM acquired as function of the HS concentration, were analysed by multivariate curve resolution alternating least squares (MCR-ALS). Three types of HS samples were studied: one commercial humic acid; two samples of fulvic acid (FA) extracted from a pinewood soil; two samples of FA extracted from recycled wastes. The fluorescence measurements were carried out at HS concentration between 5 and 100 mg/L and at pH 6. The application of MCR-ALS algorithm on each individual EEM, as well as on column-wise augmented matrices, allows the identification of three major fluorophores in all HS samples analysed. The emission and excitation spectra of these fluorophores were recovered and are characteristic of each sample. Moreover, the variation of the fluorescence intensities of each fluorophore with HS concentration shows deviations from linearity at HS concentration higher than 30 mg/L, depending on the fluorophore and/or sample. This behaviour reveals the existence of inner filter effects that affect the proportionally between the fluorescent signal and concentration but do not provoke measurable distortions on the fluorescence spectra of the detected fluorophores.  相似文献   

2.
In vivo and ex vivo studies of fluorescence from endogenous and exogenous molecules in tissues and cells are common for applications such as detection or characterization of early disease. A systematic determination of the excitation-emission matrices (EEM) of known and putative endogenous fluorophores and a number of exogenous fluorescent photodynamic therapy drugs has been performed in solution. The excitation wavelength range was 250-520 nm, with fluorescence emission spectra collected in the range 260-750 nm. In addition, EEM of intact normal and adenomatous human colon tissues are presented as an example of the relationship to the EEM of constituent fluorophores and illustrating the effects of tissue chromophore absorption. As a means to make this large quantity of spectral data generally available, an interactive database has been developed. This currently includes EEM and also absorption spectra of 35 different endogenous and exogenous fluorophores and chromophores and six photosensitizing agents. It is intended to maintain and extend this database in the public domain, accessible through the Photochemistry and Photobiology website (http://www.aspjournal. com/).  相似文献   

3.
Lin B  Bergholt MS  Lau DP  Huang Z 《The Analyst》2011,136(19):3896-3903
We report the diagnostic ability of ultraviolet (UV)-excited autofluorescence (AF) excitation-emission matrix (EEM) spectroscopy associated with parallel factor (PARAFAC) analysis for differentiating cancer from normal nasopharyngeal tissue. A bifurcated fiber-optic probe coupled with an EEM system was used to acquire tissue AF EEMs using excitation wavelengths between 260 and 400 nm, and emission collection between 280 and 500 nm. A total of 152 AF EEM landscapes were acquired from 13 normal and 16 nasopharyngeal carcinoma (NPC) thawed ex vivo tissue samples from 23 patients. PARAFAC was introduced for curve resolution of individual AF EEM landscapes associated with the endogenous tissue constituents. The significant factors were further fed to a support vector machine (SVM) and cross-validated to construct diagnostic algorithms. Both the EEM intensity landscapes and the PARAFAC model revealed tryptophan, collagen, and elastin to be the three major endogenous fluorophores responsible for the AF signal from normal and NPC tissues. The EEM intensity distribution and PARAFAC factors suggest an increase of tryptophan and a decrease of collagen and elastin in NPC tissues compared to the normal. The classification results obtained from the PARAFAC-SVM modeling yielded a diagnostic accuracy of 94.7% (sensitivity of 95.0% (76/80); specificity of 94.4% (68/72)) for normal and NPC tissue differentiation. This study suggests that UV-excited AF EEM spectroscopy integrated with PARAFAC algorithms has the potential to provide clinical diagnostics of early onset and progression of NPC.  相似文献   

4.
Detection and analysis of bacteria from environmental samples (e.g. water, air, and food) are usually accomplished by standard culture techniques or by analyses that target specific DNA sequences, antigens or chemicals. For large cell numbers in aqueous suspensions, an alternative technique that has proven useful is total luminescence spectroscopy (TLS). TLS is the acquisition of fluorescence data that records the unique excitation-emission matrix (EEM) of compound fluorophores. Past work has shown that one type of bacterial endospore, Bacillus megaterium, possessed a distinct EEM pattern useful for differentiating it in complex biological fluids and suspensions. The work described here extends those observations to establish some limits on the sensitivity and specificity of TLS for the detection and analysis of bacterial endospores versus (bacterial) vegetative cells in aqueous culture. Our findings show Bacillus endospores exhibit a dramatic blue shift of 130 nm in excitation and a smaller shift of 50 nm in emission when compared to ancillary endospore and non-endospore forming bacterial cells.  相似文献   

5.
《Analytical letters》2012,45(13-14):2747-2760
Abstract

The development of fluorescent pigments in aging human collagen has been observed, but neither the source of these compounds nor their nature has been described. Recently two distinct fluorophores were isolated from aging insoluble human collagen rich tissue following a sequence of proteolytic digestions and chromatographic separations. Using the videofluormeter, which monitors the fluorescence intensity of a sample as a function of several excitation and emission wavelengths, the fluorescence of the collagen rich tissue at various stages of the separation process was analyzed to determine the number of fluorescent components in each of the samples and estimate their fluorescence spectra. The analysis indicated that the isolated fluorophores were indeed single-component samples and that the insoluble collagen-rich fraction contains two major fluorophores whose spectra are consistent with the spectra of the isolated compounds.  相似文献   

6.
In order to test whether lignin fluorescence originates from discrete fluorophores, fluorescence emission spectra of the lignin model dehydrogenative polymer (DHP) were analyzed by the band deconvolution method and time-resolved analysis of both the excitation and emission spectra. Two series of 22 fluorescence emission spectra of DHP in chloroform/methanol (3:1, v/v) solution, and as a solid suspension in water, were deconvoluted into three fluorescence and one Raman Gaussian components. Emission spectra were obtained by stepwise variation of the excitation wavelength from 360 to 465 nm. Deconvolution was performed by nonlinear fitting of all three Gaussian parameters: area, width and position. Position of all components in a series was treated as a random variable and its approximate probability distribution (APD) calculated from a series of histograms with increasing number of abscissa intervals. A five peak multimodal APD profile was obtained for both series of DHP emission spectra. The mean fluorescence lifetime varied with wavelength both in the emission and the excitation decay-associated spectra (DAS), where four kinetic components were resolved. The shapes of the excitation spectra of the four components were quite different and gradually shifted bathochromically. The multicomponent nature of the DHP emission spectra along with the changes in the mean fluorescence lifetime and the form of the excitation DAS of the four components give evidence of the heterogeneous origin of fluorescent species emitting in the visible.  相似文献   

7.
Urine is one of the diagnostically important bio fluids, as it has different metabolites in it, where many of them are native fluorophores. Native fluorescence characteristics of human urine samples were studied using excitation–emission matrices (EEMs) over a range of excitation and emission wavelengths, and emission spectra at 405 nm excitation, to discriminate patients with cancer from the normal subjects. The fluorescence spectra of urine samples of cancer patients exhibit considerable spectral differences in both EEMs and emission spectra with respect to normal subjects. Different ratios were calculated using the fluorescence intensity values of the emission spectra and they were used as input variables for a multiple linear discriminant analysis across different groups. The discriminant analysis classifies 94.7% of the original grouped cases and 94.1% of the cross‐validated grouped cases correctly. Based on the fluorescence emission characteristics of urine and statistical analysis, it may be concluded that the fluorophores nicotinamide adenine dinucleotide (NADH) and flavins may be considered as metabolomic markers of cancer.  相似文献   

8.
Urinary tract infections (UTIs) are known to alter the normal urine composition which, in principle, can lead to changes in urine autofluorescence. This paper describes the study of human urine (normal and UTI) by using UV fluorescence excitation/emission matrices and synchronous spectra and proposes a method of diagnosing UTI without any sample preparation. The method is based on excitation in the shorter UV region (250-350 nm) which shows good discrimination between the normal urine and UTI samples. The synchronous scans with an offset of Δλ = 90 nm were also able to differentiate between normal urines and UTI samples. These differences were observed even though the two known major urine fluorophores, tryptophan and indoxyl sulfate were present in the normal urine and UTI samples in similar concentration as established by HPLC analysis. Although the identity of substances responsible for the altered autofluorescence in UTI is not established, our study shows that autofluorescence has the potential to differentiate between normal human urine samples and those with UTI.  相似文献   

9.
Chen H  Kenny JE 《The Analyst》2012,137(1):153-162
One of the conventionally accepted requirements for parallel factor analysis (PARAFAC) to handle the fluorescence excitation emission matrices (EEMs) is the independence of each component's absorption and emission spectra in simple mixtures of fluorophores. EEMs of samples in which F?rster resonance energy transfer (FRET) occurs between fluorophores seem to fail to meet this requirement. A rigorous theoretical treatment of the steady-state kinetics in the present work indicates that the fluorescence in the presence of FRET, excited by relatively weak excitation light intensity, can be reasonably separated into additive contributions from three parts: donors, acceptors and FRET. This prediction is for the first time verified experimentally in sodium dodecyl sulfate micellar solutions containing biphenyl as the energy donor and 2,5-diphenyloxazole as the energy acceptor. The experimental EEMs were well fitted to three components as predicted. A well accepted diagnostic test called core consistency (CC), specifically designed for modeling simple mixtures of fluorophores with PARAFAC, was found to be negative for the 3-component model in the present study. The simultaneous occurrence of good model fit and significantly negative CC when modeling fluorophore mixtures by conventional PARAFAC would be indicative of the presence of physical/chemical processes (e.g., FRET) that deviate from the conventional working requirements for PARAFAC. The extent of FRET has been independently measured or calculated by three methods: 1) decrease in steady state fluorescence of donor; 2) lifetime measurements with population analysis; and 3) Poisson statistics based on PARAFAC-determined distribution constants. The results of the three methods are consistent. The normalized scores of the three components found by PARAFAC also agree to within a few percent with relative concentrations in aqueous and micelle phases determined from distribution constants for the solutions prepared with nine different combinations of total donor and acceptor concentrations. Our theoretical treatment also for the first time spells out in detail the relationship between the PARAFAC scores and concentrations of components, in terms of photophysical constants of the components and spectral shape factors.  相似文献   

10.
Fluorescence excitation-emission matrix (EEM) spectroscopy is a useful tool for interpretation of fluorescence information from natural water samples. One of the major problems with this technique is the inner-filter effect (IFE), i.e. absorption of light at both the excitation and emission wavelengths. The common solutions are to either dilute the sample or apply some form of mathematical correction, most often based on the measured absorbance of the sample. Since dilution is not always possible, e.g. in on-line or in situ EEM recordings, and corrections based on absorbance are hampered primarily by the use of a separate absorbance instrument, neither of these solutions is optimal. In this work, we propose a mathematical correction procedure based on the intensity of Raman scatter from water. This procedure was found to reduce the error after correction by up to 50% in comparison with two absorbance correction procedures. Furthermore, it does not require the use of a separate absorbance measurement, and it is applicable to on-line and in situ EEM recordings, where the IFE would otherwise cause problems.  相似文献   

11.
Fluorescence spectroscopy is a sensitive analytical tool in the studies of both simple and complex molecular structures. In complex molecules, however, determining the number and position of components may give a specific insight into the structure, complementary to the other analytical techniques. We applied log–normal model to analyze fluorescence of simple monofluorophore molecule. In order to analyze spectra where both fluorophores and Raman emission bands were present, we developed a method obtained by combination of the symmetric, Gaussian, for Raman and asymmetric, log–normal model, for fluorescence, applicable to the molecules of different complexity. Technically, for each sample we varied excitation wavelength with 5 nm step and recorded the corresponding emission spectra. They were subsequently used for component analysis. Position of each component was plotted against the excitation wavelength. Applying this approach we could identify minimal number of components having stable positions, while their approximate probability density (APD) in a spectral series was correlated with the probable number of fluorophores in the molecule. The method was tested on molecules containing different number of fluorophores: monomers involved in the synthesis of plant polymer lignin—coniferyl alcohol (one fluorophore), ferulic acid (two fluorophores) and on lignin model compound produced from these monomers (many fluorophores). All investigated species belong to benzene-substituted class of compounds, and it is reasonable to assume that they have similar fluorescence band contour. We also report the results of environmental scanning electron microscopy (ESEM) studies showing multilayered dehydrogenative polymer (DHP) structure, in order to show complexity of the polymer. Our results present complementarity of these two approaches in the structural studies of the lignin model compound.  相似文献   

12.
Light emitting diode excitation emission matrix fluorescence spectroscopy   总被引:2,自引:0,他引:2  
Hart SJ  JiJi RD 《The Analyst》2002,127(12):1693-1699
An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (< 5 ppb). The LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.  相似文献   

13.
Spectroscopic diagnosis of colonic dysplasia.   总被引:4,自引:0,他引:4  
We have developed a method for defining diagnostic algorithms for pathologic conditions based on fluorescence spectroscopy. We apply this method to human colon tissue and show that fluorescence can be used to diagnose the presence or absence of colonic adenoma. This method uses fluorescence excitation-emission matrices (EEM) to identify optimal excitation regions for obtaining fluorescence emission spectra which can be used to differentiate normal and pathologic tissues. In the case of normal and adenomatous colon tissue, these were found to be: 330, 370, and 430 nm +/- 10 nm. At these excitation wavelengths, emission wavelengths for use in diagnostic algorithms are identified from average difference and ratio of the spectra from normal and pathologic tissues. In colon tissue, at 370 nm excitation, 404, 480, and 680 nm were found to be useful emission wavelengths for diagnosing the presence of adenoma in vitro. The basis of colon tissue autofluorescence was investigated using EEM of pure molecules and relevant excitation-emission maxima in the literature.  相似文献   

14.
To obtain detailed information about the three-dimensional (3D) organization of small biomolecular assemblies with a size of less than 100 nanometers, advanced techniques are required that enable the determination of absolute 3D positions and distances between individual fluorophores well below the resolution limit of conventional light microscopy. We show how spectrally resolved fluorescence lifetime imaging microscopy (SFLIM) can provide significant contributions and allow us to determine distances between conventional individual fluorophores (Bodipy 630/650 and Cy5.5) that are less than 20 nm apart. We take advantage of fluorescent dyes (here Cy5.5 and Bodipy 630/650) that can be efficiently excited by a single pulsed diode laser emitting at 635 nm but differ in their fluorescence lifetime and emission maxima. The potential of the method for ultrahigh colocalization studies is demonstrated by measuring the end-to-end distance between single fluorophores separated by double-stranded DNA of various lengths. Combining SFLIM with polarization-modulated excitation allows us to obtain, simultaneously, information about the relative orientation of fluorophores. Furthermore, we show that the environment-dependent photophysics of conventional fluorophores, that is, photostability, blinking pattern, and the tendency to enter irreversible nonfluorescent states, sets certain limitations to their in vitro and in vivo applications.  相似文献   

15.
三维荧光二阶校正法快速测定人尿样中奥沙普秦含量   总被引:1,自引:0,他引:1  
利用三维荧光光谱技术,结合分别基于自加权交替三线性分解(SWATLD)和交替归一加权残差(ANWE)算法的二阶校正方法,直接快速测定人体样液中以及萘丁美酮或萘普生于扰共存下奥沙普秦的含量.利用本方法的"二阶优势",在尿液内源物质及萘丁美酮或萘普生干扰共存下有效地分辨出奥沙普秦的激发发射荧光光谱.采用SWATLD和ANW...  相似文献   

16.
Single fluorophores and single-pair fluorescence resonance energy transfer were studied with a new confocal fluorescence microscope that allows, for the first time, the wavelength and emission time of each detected photon to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive photon detector. For each detected photon the detection system records its wavelength, its emission time relative to the excitation pulse, and its absolute emission time. A histogram over many photons can generate a full fluorescence spectrum and correlated decay plot for a single molecule for any time interval. At the single molecule level, this approach makes possible entirely new types of temporal and spectral correlation spectroscopies. This paper presents our initial results on simultaneous time- and wavelength-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 molecules embedded in thin films of poly(methyl methacrylate) (PMMA), and of single-pair fluorescence resonance energy transfer between two Alexa fluorophores spaced apart by a short polyproline peptide.  相似文献   

17.
The effect of low temperatures on the interaction in human serum albumin (HSA)-diethyl sulfoxife (DESO)-dipropyl sulfoxide (DPSO)-water systems is investigated by means of fluorescence spectroscopy (intrinsic protein fluorescence, three-dimensional excitation/emission matrix (3D EEM)). The Stern-Volmer constants of HSA quenching are calculated for these systems. The structural changes occurring in these systems are characterized using 3D EEM profiles of HSA. It is shown that the HSA structural changes depend not only on the direct interaction of protein with sulfoxides but on structural changes in the solvent as well.  相似文献   

18.
Parallel factor analysis (PARAFAC) is a widespread method for modeling fluorescence data by means of an alternating least squares procedure. Consequently, the PARAFAC estimates are highly influenced by outlying excitation–emission landscapes (EEM) and element‐wise outliers, like for example Raman and Rayleigh scatter. Recently, a robust PARAFAC method that circumvents the harmful effects of outlying samples has been developed. For removing the scatter effects on the final PARAFAC model, different techniques exist. Newly, an automated scatter identification tool has been constructed. However, there still exists no robust method for handling fluorescence data encountering both outlying EEM landscapes and scatter. In this paper, we present an iterative algorithm where the robust PARAFAC method and the scatter identification tool are alternately performed. A fully automated robust PARAFAC method is obtained in that way. The method is assessed by means of simulations and a laboratory‐made data set. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Wilson JN  Gao J  Kool ET 《Tetrahedron》2007,63(17):3427-3433
We describe the properties of a series of oligomeric polyfluorophores assembled on the DNA backbone. The 11 oligomers (oligodeoxyfluorosides, ODFs), 4-7 monomers in length, were composed of only two fluorescent monomers and a spacer in varied sequences, and were designed to test how fluorescent nucleobases can interact electronically to yield complexity in fluorescence emission. The monomer fluorophores were deoxyribosides of pyrene and perylene, which emit light in violet and blue wavelengths, respectively. The experiments show that simple variation in sequence and spacing can dramatically change fluorescence, yielding emission maxima ranging from 380 to 557 nm and visible colors from violet to orange-red. Fluorescence lifetime data, excitation spectra, and absorption data point to a number of multi-fluorophore electronic interactions, including pyrene-pyrene and perylene-perylene excimers, pyrene-perylene exciplexes, as well as monomer dye emissions, contributing to the final spectral outcomes. Thus, two simple fluorophores can be readily combined to give emissions over much of the visible spectrum, all requiring only a single excitation. The results demonstrate that fluorescent nucleobases in oligomeric form can act cooperatively as electronic units, and that fluorophore sequence in such oligomers is as important as fluorophore composition in determining fluorescence properties.  相似文献   

20.
Two-photon excitation of a trifluorophore (6-carboxyfluorescein, N,N,N',N'-tetramethyl-6-carboxyrhodamine and cyanine-5 monofunctional dye) labeled DNA, which has a scaffold of 26 nucleotides, was achieved using focused laser light of a Q-switched Nd-YAG laser (1064 nm). The observed fluorescence signature (emission ratio from the three fluorophores) of the labeled DNA after two-photon excitation is very different from the fluorescence signatures produced by one-photon excitation at different wavelength. The additional fluorescence signatures produced by two-photon excitation of the fluorescent oligonucleotides will facilitate their use as combinatorial fluorescence energy transfer tags for multiplex genetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号