首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mass spectrometry (MS) together with genome database searches serves as a powerful tool for the identification of proteins. In proteome analysis, mixtures of cellular proteins are usually separated by sodium dodecyl sulfate (SDS) polyacrylamide gel-based two-dimensional gel electrophoresis (2-DE) or one-dimensional gel electrophoresis (1-DE), and in-gel digested by a specific protease. In-gel protein digestion is one of the critical steps for sensitive protein identification by these procedures. Efficient protein digestion is required for obtaining peptide peaks necessary for protein identification by MS. This paper reports a remarkable improvement of protein digestion in SDS polyacrylamide gels using an acid-labile surfactant, sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate (ALS). Pretreatment of gel pieces containing protein spots separated by 2-DE with a small amount of ALS prior to trypsin digestion led to increases in the digested peptides eluted from the gels. Consistently, treatment of gel pieces containing silver-stained standard proteins and those separated from tissue extracts resulted in the detection of increased numbers of peptide peaks in spectra obtained by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOFMS). Hence the present protocol with ALS provides a useful strategy for sensitive protein identification by MS.  相似文献   

2.
From proteomics to genomics   总被引:7,自引:0,他引:7  
Sperling K 《Electrophoresis》2001,22(14):2835-2837
Presently, science is moving from genomics to proteomics in order to get insight into the functional network of gene expression. Actually however, proteomics is much older than genomics and dates back to the introduction of the two-dimensional gel electrophoresis technique (2-DE) independently by Klose and O'Farrell. Based on this approach almost all cellular proteins can be separated. New developments in mass spectrometry allowed identification of single spots in the 2-DE protein pattern, including the underlying genes. Joachim Klose has focused his pioneering 2-DE studies on mouse models with special emphasis on quantitative protein variants. According to him, proteins are living molecules exhibiting a characteristic protein phenotype.  相似文献   

3.
The nematode Caenorhabditis elegans (C. elegans) is the first animal whose whole 97 Mb genome sequence, encoding ca. 19000 open reading frames (ORF's), has been essentially determined. We tried to establish a 2-DE map of the nematode proteome by means of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). A soluble protein fraction of mixed stages of the worm, wild-type strain N2, was applied to 2-D PAGE. After Coomassie Brilliant Blue (CBB) staining, 1200 spots were detected and 140 major spots were excised from the gel and subjected to in-gel digestion with Achromobacter protease I (lysyl endopeptidase). Resulting peptides were analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) followed by peptide mass fingerprinting for protein identification. With this approach we have obtained a two-dimensional electrophoresis (2-DE) protein map in which 69 spots were localized as landmarks for comparison of expression profiles to elucidate the basis of various biological events.  相似文献   

4.
Single proteins separated by 2-DE often show multiple spots spreading along the first dimension. In many cases, such charge trains are explained by isoform differences or by putative post-translational modifications including phosphorylation, glycosylation and others. We now report that individual spots of such charge trains on 2-D gels in fact often represent the same protein, but, apparently due to conformational changes, segregate to different isoelectric points. If MS analysis reveals protein identity, we therefore suggest integrating all individual spots within a charge train for quantification. Especially in quality control of pharmaceutical proteins, the integration of the spot groups of all active contents is preferable in order to obtain reproducible and reasonable quantitative results. However, most commercial software packages for gel analysis integrate the signals spot-wise. We provide an improved quantification tool for proteins with charge train groups. This calculation can be implemented using the MATLAB software and the self-developed "Correct Integration Software System" or the commercial software package Delta2D.  相似文献   

5.
Wheat allergens are responsible for symptoms in 60–70% of bakers with work-related allergy, and knowledge, at the molecular level, of this disorder is progressively accumulating. The aim of the present study is to investigate the panel of wheat IgE positivity in allergic Italian bakers, evaluating a possible contribution of novel wheat allergens included in the water/salt soluble fraction. The water/salt-soluble wheat flour proteins from the Italian wheat cultivar Bolero were separated by using 1-DE and 2-DE gel electrophoresis. IgE-binding proteins were detected using the pooled sera of 26 wheat allergic bakers by immunoblotting and directly recognized in Coomassie stained gel. After a preparative electrophoretic step, two enriched fractions were furtherly separated in 2-DE allowing for detection, by Coomassie, of three different proteins in the range of 21–27 kDa that were recognized by the pooled baker’s IgE. Recovered spots were analyzed by nanoHPLC Chip tandem mass spectrometry (MS/MS). The immunodetected spots in 2D were subjected to mass spectrometry (MS) analysis identifying two new allergenic proteins: a glucose/ribitol dehydrogenase and a 16.9 kDa class I heat shock protein 1. Mass spectrometer testing of flour proteins of the wheat cultivars utilized by allergic bakers improves the identification of until now unknown occupational wheat allergens.  相似文献   

6.
Yang Y  Thannhauser TW  Li L  Zhang S 《Electrophoresis》2007,28(12):2080-2094
With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through a comparison of protein identifications using direct MALDI-TOF/TOF and LC-ESI-MS/MS analyses of 2-D gel separated proteins from cauliflower florets, we have developed an integrated approach to improve the accuracy and reliability of comparative 2-D electrophoresis. From 46 spots of interest, we identified 51 proteins by MALDI-TOF/TOF analysis and 108 proteins by LC-ESI-MS/MS. The results indicate that 75% of the analyzed spots contained multiple proteins. A comparison of hit rank for protein identifications showed that 37 out of 43 spots identified by MALDI matched the top-ranked hit from the ESI-MS/MS. By using the exponentially modified protein abundance index (emPAI) to determine the abundance of the individual component proteins for the spots containing multiple proteins, we found that the top-hit proteins from 40 out of 43 spots identified by MALDI matched the most abundant proteins determined by LC-MS/MS. Furthermore, our 2-D-GeLC-MS/MS results show that the top-hit proteins in 44 identified spots contributed on average 81% of the spots' staining intensity. This is the first quantitative measurement of the average rate of false assignment for direct MALDI analysis of 2-D gel spots using a new integrated workflow (2-D gel imaging, "2-D GeLC-MS/MS", and emPAI analysis). Here, the new approach is proposed as an alternative to traditional gel-based quantitative proteomics studies.  相似文献   

7.
Cerebrospinal fluid (CSF) is in close proximity to the brain and changes in the protein composition of CSF may be indicative of altered brain protein expression in neurodegenerative disorders. Analysis of brain-specific proteins in CSF is complicated by the fact that most CSF proteins are derived from the plasma and tend to obscure less abundant proteins. By adopting a prefractionation step prior to two-dimensional gel electrophoresis (2-DE), less abundant proteins are enriched and can be detected in complex proteomes such as CSF. We have developed a method in which liquid-phase isoelectric focusing (IEF) is used to prefractionate individual CSF samples; selected IEF fractions are then analysed on SYPRO-Ruby-stained 2-D gels, with final protein identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). To optimise the focusing of the protein spots on the 2-D gel, the ampholyte concentration in liquid-phase IEF was minimised and the focusing time in the first dimension was increased. When comparing 2-D gels from individual prefractionated and unfractionated CSF samples it is evident that individual protein spots are larger and contain more protein after prefractionation of CSF. Generally, more protein spots were also detected in the 2-D gels from prefractionated CSF compared with direct 2-DE separations of CSF. Several proteins, including cystatin C, IgM-kappa, hemopexin, acetyl-coenzyme A carboxylase-alpha, and alpha-1-acid glycoprotein, were identified in prefractionated CSF but not in unfractionated CSF. Low abundant forms of posttranslationally modified proteins, e.g. alpha-1-acid glycoprotein and alpha-2-HS glycoprotein, can be enriched, thus better resolved and detected on the 2-D gel. Liquid-phase IEF, as a prefractionation step prior to 2-DE, reduce sample complexity, facilitate detection of less abundant protein components, increases the protein loads and the protein amount in each gel spot for MALDI-MS analysis.  相似文献   

8.
High-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry was developed and applied to the proteome analysis of bronchoalveolar lavage fluid (BALF) from a patient with pulmonary alveolar proteinosis. With use of 1-D and 2-D gel electrophoresis, surfactant protein A (SP-A) and other surfactant-related lung alveolar proteins were efficiently separated and identified by matrix-assisted laser desorption/ionization FTICR mass spectrometry . Low molecular mass BALF proteins were separated using a gradient 2-D gel. An efficient extraction/precipitation system was developed and used for the enrichment of surfactant proteins. The result of the BALF proteome analysis show the presence of several isoforms of SP-A, in which an N-non-glycosylierte form and several proline hydroxylations were identified. Furthermore, a number of protein spots were found to contain a mixture of proteins unresolved by 2-D gel electrophoresis, illustrating the feasibility of high-resolution mass spectrometry to provide identifications of proteins that remain unseparated in 2-D gels even upon extended pH gradients. Yu Bai and Dmitry Galetskiy both contributed equally to this work.  相似文献   

9.
Optimal application of biological mass spectrometry (MS) in combination with two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) of human cerebrospinal fluid (CSF) can lead to the identification of new potential biological markers of neurological disorders. To this end, we analyzed a number of 2-D PAGE protein spots in a human CSF pool using spot co-localization, N-terminal sequencing, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry (nanoLC-ESI-TOF-MS) with tandem MS switching. Our constructed CSF master contained 469 spots after image analysis and processing of 2-D gels. Upon visual inspection of our CSF master with the CSF pattern available on the ExPASy server, it was possible to locate and annotate 15 proteins. N-terminal sequence analysis and MALDI-MS peptide mass fingerprint analysis of both silver- and Coomassie Brilliant Blue (CBB) G-250-stained protein spots after in situ trypsin digest not only confirmed nine of the visually annotated spots but additionally resolved the identity of another 13 spots. Six of these proteins were not annotated on the 2-D ExPASy map: complement C3 alpha-chain (1321-1663), complement factor B, cystatin C, calgranulin A, hemoglobin beta-chain, and beta-2-microglobulin. It was clear that MALDI-MS identification from CBB G-250-stained, rather than from silver-stained, spots was more successful. In cases where no N-terminal sequence and/or no clear MALDI-MS result was available, nanoLC-ESI-TOF-MS and tandem MS automated switching was used to clarify and/or identify these protein spots by generating amino acid sequence tags. In addition, enrichment of the concentration of low-abundant proteins on 2-D PAGE was obtained by removal of albumin and immunoglobulins from the CSF pool using affinity chromatography. Subsequent analysis by 2-D PAGE of the fractionated CSF pool showed various new silver-stainable protein spots, of which four were identified by nanoLC-ESI-TOF-MS and tandem MS switching. No significant homology was found in either protein or DNA databases, indicating than these spots were unknown proteins.  相似文献   

10.
We have developed a matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) based technique for the detection of intact proteins directly from immobilized pH gradient gels (IPGs). The use of this technique to visualize proteins from IPGs was explored in this study. Whole cell Escherichia coli extracts of various loadings were separated on IPGs. These IPGs were processed to remove contaminants and to achieve matrix/analyte cocrystallization on the surface of the gel. Mass spectra were acquired by scanning the surface of the gel and were assimilated into a "virtual" two dimensional (2-D) gel. This virtual 2-D gel is analogous to a "classical" 2-D gel, except that the molecular weight information is acquired by mass spectrometry rather than by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This mass spectrometry (MS) based technology exemplifies a number of desirable characteristics, some of which are not attainable with classical two-dimensional electrophoresis (2-DE). These include high sensitivity, high reproducibility, and an inherently higher resolution and mass accuracy than 2-D gels. Furthermore, there is a difference in selectivity exhibited between virtual 2-D gels and classical 2-D gels, as a number of proteins are visible in the virtual gel image that are not present in the stained gels and vice versa. In this report, virtual 2-D gels will be compared to classical 2-D gels to illustrate these features.  相似文献   

11.
Proteins separated by two-dimensional (2-D) gel electrophoresis can be visualized using various protein staining methods. This is followed by downstream procedures, such as image analysis, gel spot cutting, protein digestion, and mass spectrometry (MS), to characterize protein expression profiles within cells, tissues, organisms, or body fluids. Characterizing specific post-translational modifications on proteins using MS of peptide fragments is difficult and labor-intensive. Recently, specific staining methods have been developed and merged into the 2-D gel platform so that not only general protein patterns but also patterns of phosphorylated and glycosylated proteins can be obtained. We used the new Pro-Q Diamond phosphoprotein dye technology for the fluorescent detection of phosphoproteins directly in 2-D gels of mouse leukocyte proteins, and Pro-Q Emerald 488 glycoprotein dye to detect glycoproteins. These two fluorescent stains are compatible with general protein stains, such as SYPRO Ruby stain. We devised a sequential procedure using Pro-Q Diamond (phosphoprotein), followed by Pro-Q Emerald 488 (glycoprotein), followed by SYPRO Ruby stain (general protein stain), and finally silver stain for total protein profile. This multiple staining of the proteins in a single gel provided parallel determination of protein expression and preliminary characterization of post-translational modifications of proteins in individual spots on 2-D gels. Although this method does not provide the same degree of certainty as traditional MS methods of characterizing post-translational modifications, it is much simpler, faster, and does not require sophisticated equipment and expertise in MS.  相似文献   

12.
Electrophoretic analysis of phosphorylation of the yeast 20S proteasome   总被引:4,自引:0,他引:4  
The 26S proteasome complex, consisting of two multisubunit complexes, a 20S proteasome and a pair of 19S regulatory particles, plays a major role in the nonlysosomal degradation of intracellular proteins. The 20S proteasome was purified from yeast and separated by two-dimensional gel electrophoresis (2-DE). A total of 18 spots separated by 2-DE were identified as the 20S proteasome subunits by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The alpha2-, alpha4- and alpha7-subunits gave multiple spots, which converged into one spot for each subunit when treated with alkaline phosphatase. The difference of pI between phosphorylated and dephosphorylated spots and their reaction against anti-phosphotyrosine antibody suggested that the alpha2- and alpha4-subunits are phosphorylated either at Ser or at Thr residue, and the alpha7-subunit is phosphorylated at Tyr residue(s). These phosphorylated subunits were analyzed by electrospray ionization-quadrupole time of flight-tandem MS (ESI-QTOF-MS/MS) to deduce the phosphorylation sites. The 20S proteasome has three different protease activities: chymotrypsin-like, trypsin-like and peptidylglutamyl peptide-hydrolyzing activities. The phosphatase treatment increased K(m) value for chymotrypsin-like activity of the 20S proteasome, indicating that phosphorylation may play an important role in regulating the proteasome activity.  相似文献   

13.
Towards a two-dimensional proteome map of Mycoplasma pneumoniae   总被引:4,自引:0,他引:4  
A Proteome map of the bacterium Mycoplasma pneumoniae was constructed using two-dimensional (2-D) gel electrophoresis in combination with mass spectrometry (MS). M. pneumoniae is a human pathogen with a known genome sequence of 816 kbp coding for only 688 open reading frames, and is therefore an ideal model system to explore the scope and limits of the current technology. The soluble protein content of this bacterium grown under standard laboratory conditions was separated by 1-D or 2-D gel electrophoresis applying various pH gradients, different acrylamide concentrations and buffer systems. Proteins were identified using liquid chromatography-electrospray ionization ion trap and matrix-assisted laser desorption/ionization-MS. Mass spectrometric protein identification was supported and controlled using N-terminal sequencing and immunological methods. So far, proteins from about 350 spots were characterized with MS by determining the molecular weights and partial sequences of their tryptic peptides. Comparing these experimental data with the DNA sequence-derived predictions it was possible to assign these 350 proteins to 224 genes. The importance of proteomics for genome analysis was shown by the identification of four proteins, not annotated in the original publication. Although the proteome map is still incomplete, it is already a useful reference for comparative analyses of M. pneumoniae cells grown under modified conditions.  相似文献   

14.
We present a simple protocol for affinity depletion to remove the two most abundant serum proteins, albumin and immunoglobulin G (IgG). Under native conditions, albumin/IgG were efficiently removed and several proteins were enriched as shown by two-dimensional electrophoresis (2-DE). Besides that, partly denaturing conditions were established by adding 5 or 20% acetonitrile (ACN) in order to disrupt the binding of low-molecular-weight (LMW) proteins to the carrier proteins albumin/IgG. 2-DE results showed that the total number of detected LMW proteins increased under denaturing conditions when compared to native conditions. Interestingly, the presence of 5% ACN in serum revealed better enrichment of LMW proteins when compared to 20% ACN condition. Seven randomly distributed spots in albumin/IgG depleted serum samples under 5% ACN condition were picked from the 2-DE gels and identified by mass spectrometry (MS). The intensity of five LMW protein spots increased under denaturing conditions when compared to native conditions. Three of the seven identified spots (serum amyloid P, vitamin D-binding protein, and transthyretin) belong to a group of relatively low-abundant proteins, which make up only 1% of all serum proteins. The method presented here improves the resolution of the serum proteome by increasing the number of visualized spots on 2-D gels and allowing the detection and MS identification of LMW proteins and proteins of lower abundance.  相似文献   

15.
K Ou  T K Seow  R C Liang  S E Ong  M C Chung 《Electrophoresis》2001,22(13):2804-2811
Recently, we reported the proteome analysis of a human hepatocellular carcinoma cell line, HCC-M (Electrophoresis 2000, 21, 1787-1813), using two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). From a total of 408 unique spots excised from the 2-DE gel, 301 spots yielded good MALDI spectra. Out of these, 272 spots had matches returned from the database search leading to the identification of these proteins. Here, we report the results on the identification of the remaining 29 spots using nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). First, "peptide tag sequencing" was performed to obtain partial amino acid sequences of the peptides to search the SWISS-PROTand NCBI nonredundant protein databases. Spots that were still not able to find any matches from the databases were subjected to de novo peptide sequencing. The tryptic peptide sequences were used to search for homologues in the protein and nucleotide databases with the NCBI Basic Local Alignment Search Tool (BLAST), which was essential for the characterization of novel or post-translationally modified proteins. Using this approach, all the 29 spots were unambiguously identified. Among them, phosphotyrosyl phosphatase activator (PTPA), RNA-binding protein regulatory subunit, replication protein A 32 kDa subunit (RP-A) and N-acetylneuraminic acid phosphate synthase were reported to be cancer-related proteins.  相似文献   

16.
Yu LR  Zeng R  Shao XX  Wang N  Xu YH  Xia QC 《Electrophoresis》2000,21(14):3058-3068
In the previous study, the proteomes of the human hepatoma cell line BEL-7404 and the normal human liver cell line L-02 were separated by high resolution two-dimensional electrophoresis (2-DE). Image analysis revealed that 99 protein spots showed quantitative and qualitative variations that were significant (P < 0.01) and reproducible. Here we report the identification results of some of these protein spots. Protein spots excised from 2-D gels were subjected to in-gel digestion with trypsin, and the resulting peptides were measured by microbore high performance liquid chromatography - ion trap - mass spectrometry (LC-IT-MS) to obtain the tandem mass (MS/MS) spectra. Twelve protein spots were identified with high confidence using SEQUEST with uninterpreted MS/MS raw data. Besides inosine-5'-monophosphate dehydrogenase 2, heat shock 27 kDa protein, calreticulin and calmodulin, whose expression was elevated in hepatoma cells, glutathione-S-transferase P was identified from hepatoma cells in which its level was 18-fold higher compared to human liver cells. Two spots were identified as the homologs of reticulocalbin for the first time in hepatoma cells and their expression increased compared to liver cells. However, tubulin beta-1 chain and natural killer cell enhancing factor B were downregulated in hepatoma cells. A tumor suppressing serpin, maspin precursor, was identified from one spot whose quantity was much higher in the normal liver cell line. More interestingly, epidermal fatty acid-binding protein (E-FABP) and fatty acid-binding protein, adipocyte-type (A-FABP), were detected in liver cells but not in hepatoma cells. The functional implication of the identified proteins was discussed.  相似文献   

17.
Mouse brain proteins were isolated from five regions (cerebellum, cerebral cortex, hippocampus, striatum, and cervical spinal cord) at five ages from the 10th week to the 24th month, and separated by two-dimensional gel electrophoresis (2-DE). 2-DE was carried out with an immobilized pH gradient bar in the first dimension, and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Over one thousand protein spots were visualized by silver staining and quantified by image processing. In the analyses, 58 protein spots were distinguishable among the above five brain regions, and 17 proteins were shown to be varied in quantity in the course of aging. Partial amino-terminal sequences and/or internal sequences for a total of 301 protein spots were analyzed. One hundred and eighty proteins appeared to have blocked N-termini and 122 proteins were identified. Twenty-seven new proteins were identified by sequence homology search. A mouse brain proteome database was constructed, which consists of the 2-DE map images and the respective spot data files with 15 related references.  相似文献   

18.
Simpson DC  Smith RD 《Electrophoresis》2005,26(7-8):1291-1305
Mass spectrometry (MS)-based proteomics is currently dominated by the analysis of peptides originating either from digestion of proteins separated by two-dimensional gel electrophoresis (2-DE) or from global digestion; the simple peptide mixtures obtained from digestion of gel-separated proteins do not usually require further separation, while the complex peptide mixtures obtained by global digestion are most frequently separated by chromatographic techniques. Capillary electrophoresis (CE) provides alternatives to 2-DE for protein separation and alternatives to chromatography for peptide separation. This review attempts to elucidate how the most promising CE modes, capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF), might best be applied to MS-based proteomics. CE-MS interfacing, mass analyzer performance, column coating to minimize analyte adsorption, and sample stacking for CZE are considered prior to examining numerous applications. Finally, multidimensional systems that incorporate CE techniques are examined; CZE often finds use as a fast, final dimension before ionization for MS, while CIEF, being an equilibrium technique, is well-suited to being the first dimension in automated fractionation systems.  相似文献   

19.
Kim J  Kim SH  Lee SU  Ha GH  Kang DG  Ha NY  Ahn JS  Cho HY  Kang SJ  Lee YJ  Hong SC  Ha WS  Bae JM  Lee CW  Kim JW 《Electrophoresis》2002,23(24):4142-4156
Hepatocellular carcinoma (HCC) is a common malignancy worldwide and is a leading cause of death. To contribute to the development and improvement of molecular markers for diagnostics and prognostics and of therapeutic targets for the disease, we have largely expanded the currently available human liver tissue maps and studied the differential expression of proteins in normal and cancer tissues. Reference two-dimensional electrophoresis (2-DE) maps of human liver tumor tissue include labeled 2-DE images for total homogenate and soluble fraction separated on pH 3-10 gels, and also images for soluble fraction separated on pH 4-7 and pH 6-9 gels for a more detailed map. Proteins were separated in the first dimension by isoelectric focusing on immobilized pH gradient (IPG) strips, and by 7.5-17.5% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels in the second dimension. Protein identification was done by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-time of flight-mass spectrometry (DE-MALDI-TOF-MS). In total, 212 protein spots (117 spots in pH 4-7 map and 95 spots in pH 6-9) corresponding to 127 different polypeptide chains were identified. In the next step, we analyzed the differential protein expression of liver tumor samples, to find out candidates for liver cancer-associated proteins. Matched pairs of tissues from 11 liver cancer patients were analyzed for their 2-DE profiles. Protein expression was comparatively analyzed by use of image analysis software. Proteins whose expression levels were different by more than three-fold in at least 30% (four) of the patients were further analyzed. Numbers of protein spots overexpressed or underexpressed in tumor tissues as compared with nontumorous regions were 9 and 28, respectively. Among these 37 spots, 1 overexpressed and 15 underexpressed spots, corresponding to 11 proteins, were identified. The physiological significance of the differential expressions is discussed.  相似文献   

20.
Protein profiling of rat cerebella during development   总被引:7,自引:0,他引:7  
Protein profiles of developing rat cerebella were analyzed by means of two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). The analysis of adult rat cerebellum gave rise to a protein map comprising approximately 3000 spots detectable by silver staining following high resolution 2-DE with a pH range of 3-10 and a mass range of 8-100 kDa. To obtain landmarks for comparison of developmental profiles of cerebellar proteins, 100 spots were subjected to peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and 67 spots were assigned on the map. Analysis of profiles of the developing cerebella revealed significant changes in the expression of proteins during development. In most cases the expression levels of proteins increased as the cerebellum matured, while the expression of 42 spots appeared specific or remarkably abundant in the immature cerebellum. Peptide mass fingerprinting of these spots allowed us to identify 29 proteins, which include, in addition to proteins of unknown function, many proteins known to have roles in the development of the central nervous system. These results suggest that the proteomic approach is valuable for mass identification of proteins involved in cerebellar morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号