首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the Picker flow calorimeter, excess molar enthalpies H E have been obtained at 25°C for mixtures of 1,2-, 1,3- and 1,4-cis- and trans-dimethylcyclohexane and cis- and trans-decalin with n-hexadecane and the highly branched C16 isomer, 2,2,4,4,6,8,8-heptamethylnonane. Values of H E are also obtained for cis- and trans-decalin mixed with C6, C7, and C9 isomers. Anomalously low values of H E occur for normal alkanes mixed with cycloalkanes in the di-equatorial configuration, suggesting the presence of a negative contribution in H E possibly due to a restriction of n-alkane molecular motion by the flat, plate-like cycloalkane.  相似文献   

2.
Extended Hildebrand solubility approach (EHSA) was applied to analyse the equilibrium solubility of sulphadiazine, sulphamerazine and sulphamethazine in some {methanol (1) + water (2)} mixtures at 298.15K. Reported experimental solubilities and some fusion properties of these drugs were used for EHSA calculations. A good predictive character of EHSA (with mean deviations lower than 4.0%) was found by using regular polynomials in order 4 when correlating the interaction parameter (W) and the Hildebrand solubility parameter of solvent mixtures free of drug (δ1+2). Nevertheless, the predictive character of EHSA was almost the same as obtained when logarithmic drug solubilities (log x3) were correlated with δ1+2.  相似文献   

3.
Extended Hildebrand solubility approach (EHSA) was applied in this research to analyse the equilibrium solubility of sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Reported experimental solubilities and some fusion properties of these drugs were used for EHSA calculations. A good predictive character of EHSA (with mean deviations lower than 4.0%) was found by using regular polynomials in order five when correlating the interaction parameter (W) and the Hildebrand solubility parameter of solvent mixtures free of drug (δ1+2). Nevertheless, the predictive character of EHSA was almost the same as obtained when logarithmic drug solubilities (log x3) were correlated with δ1+2 by using a fifth-degree regular polynomial.  相似文献   

4.
Solubility measurements of the gases He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4, SF6, and CO2 in formaldehyde diethyl acetal in the range of –10 to 30°C, and a gas partial pressure of 1 atmosphere (101.32 kPa) are reported. Standard changes of thermodynamic functions for the solution process are evaluated. The scaled particle theory is used to obtain the effective Lennard-Jones 6, 12 pair potential parameters for formaldehyde diethyl acetal. Experimental solubilities values are compared with those obtained from the application of the scaled particle theory to gas liquid solubility.  相似文献   

5.
6.
The permeability of poly(dimethylsiloxane) [PDMS] to H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8, and solubility of these penetrants were determined as a function of pressure at 35 °C. Permeability coefficients of perfluorinated penetrants (CF4, C2F6, and C3F8) are approximately an order of magnitude lower than those of their hydrocarbon analogs (CH4, C2H6, and C3H8), and the perfluorocarbon permeabilities are significantly lower than even permanent gas permeability coefficients. This result is ascribed to very low perfluorocarbon solubilities in hydrocarbon‐based PDMS coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. The perfluorocarbons are sparingly soluble in PDMS and exhibit linear sorption isotherms. The Flory–Huggins interaction parameters for perfluorocarbon penetrants are substantially greater than those of their hydrocarbon analogs, indicating less favorable energetics of mixing perfluorocarbons with PDMS. Based on the sorption results and conventional lattice solution theory with a coordination number of 10, the formation of a single C3F8/PDMS segment pair requires 460 J/mol more energy than the formation of a C3H8/PDMS pair. A breakdown in the geometric mean approximation of the interaction energy between fluorocarbons and hydrocarbons was observed. These results are consistent with the solubility behavior of hydrocarbon–fluorocarbon liquid mixtures and hydrocarbon and fluorocarbon gas solubility in hydrocarbon liquids. From the permeability and sorption data, diffusion coefficients were determined as a function of penetrant concentration. Perfluorocarbon diffusion coefficients are lower than those of their hydrocarbon analogs, consistent with the larger size of the fluorocarbons. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 415–434, 2000  相似文献   

7.
Aqueous–ionic liquid (A–IL) biphasic systems have been examined in terms of deuterated water, acid, and IL cation and anion mutual solubilities in the upper (water‐rich, in mole fraction) and lower phase of aqueous/IL biphasic systems at ambient temperature. The biphasic mixtures were composed of deuterated acids of various concentrations (mainly DCl, DNO3, and DClO4 from 10?2 to 10?4 M ) and five ionic liquids of the imidazolium family with a hydrophobic anion (CF3SO2)2N?, that is, [C1Cnim][Tf2N], (n=2, 4, 6, 8 and 10). The analytical techniques applied were 1H NMR, 19F NMR, Karl–Fischer titration, pH potentiometry for IL cations and anions, and water and acid determination. The effects of the ionic strength (μ=0.1 M NaCl and NaNO3 as well as μ=0.1 M , 0.2 M and 0.4 M NaClO4, according to the investigated acid), the nature of the IL cation, and the nature of the mineral acid on the solubilities of the (D2O, D+, Tf2N?, C1Cnim+) entities in the lower or upper phases were determined. The addition of sodium perchlorate was found to enhance the Tf2N? solubility while inhibiting the solubility of the ionic liquid cation. Differences in IL cation and anion solubilities of up to 42 mM were evidenced. The consequences for the characterization of the aqueous biphasic system, the solvent extraction process of the metal ions, and the ecological impact of the ILs are discussed.  相似文献   

8.
《Fluid Phase Equilibria》1986,28(3):309-323
Hahn, G. Svejda, P. and Kehiaian, H.V., 1986. Excess enthalpies of the liquid systems: 1,2-dichloroethane + n-alkanes or +2,2,4-trimethylpentane. Fluid Phase Equilibria, 28: 309-323.Molar excess enthalpies, hE, at 293.15 K and atmospheric pressure are reported for the binary liquid mixtures of 1,2-dichloroethane + haptane, + decane, + dodecane, + tetradecane, + hexadecane or + 2,2,4-trimethylpentane, all determined by means of a flow microcalorimeter of the Picker-type. These measurements could be reproduced within the experimental limits by calculations according to a quasi-chemical group contribution theory, using constant values for two interchange energy coefficients, C1,ad (Gibbs energy) and C2,ad (enthalpy). Fair agreement between the calculated excess heat capacities, eEp, and the experimental literature values could be obtained by adjusting a third coefficient, C3,ad (heat capacity). However, C3,ad decreases with increasing chain length of the n-alkane. Even with three C1,ad coefficients the model cannot reproduce the exact shape of the cEp versus composition curves. Apparently, not only the terms of an interchange of group surface contacts, but also conformational changes occurring in n-alkanes on mixing, contribute to the excess functions. The set of C1,ad coefficients reported in this paper should prove useful in predicting phase equilibria in liquid 1,2-dichloroethane + n-alkane mixtures.  相似文献   

9.
Molar excess enthalpies H E at 298.15 K and atmospheric pressure were determined for 12 binary liquid mixtures, 1-fluoropentane, 1-fluorohexane, or 1-fluorononane + a non-polar solvent (hexane, cyclohexane, benzene, or tetrachloromethane) and were interpreted by the DISQUAC group contribution model. 1-Fluoroalkane + n-alkane mixtures are characterized by two types of groups or contact surfaces, fluorine (F) and alkane (CH3, CH2), the remaining mixtures by the additional contact surfaces of the solvents (C6H12 C6H6, or CCl4). The interchange energies, entirely dispersive, of the alkane-solvent contacts were determined independently from the study of solvent-alkane mixtures. The dispersive F-alkane parameters were assumed to equal the parameters of perfluoroalkanes + n-alkanes. The shape of the H E curves of 1-fluorolkane + polarizable solvent (C6H6, CCl4) mixtures are best reproduced by the model when the quasi-chemical F-solvent parameters are assumed to equal zero. The quasi-chemical F-alkane (the same for n-alkanes and cyclohexane) and the dispersive F-solvent parameters were estimated in this work. The 1-fluoroalkane solutions in C6H6 or CCl4 exhibit the characteristic features of polar solute + polarizable solvent mixtures, viz., the deviations from the ideality are less positive than in alkanes and the experimental H E curves are strongly asymmetrical.  相似文献   

10.
A simple method for the calculation of the enthalpy of solvation is presented and demonstrated for 35 n-alkane + n-alkane solutions at 25°C. There is a good agreement between the predicted and experimental values. The calculation was based on the separation of the solvation enthalpy into the cavity formation and solute-solvent interaction contributions. The former term was determined from the activation enthalpy of the solvent viscous flow and solute molar volume while the latter on the basis of the dispersion energy using van der Waals diameters for n-propyl group. The procedure was also successful in prediction of the vaporization enthalpy of C5–C17 n-alkanes.  相似文献   

11.
The empirical relationship IE ∝? 1/n, between the ionization energy (IE) and molecular size (as represented by the number of atoms, n) in homologous series of organic compounds has been confirmed for n-alkanes, alkyl halides, cyclic ethers and alkyl-subsiituted cycloalkanes. For each series, the plot of IE vs. 1/n produces a line of characteristic slope. The only exception is the cycloalkanes themselves, whose IE values (from C3 to C8) are closely similar. The possible relationship between the IE, the polarizability of the molecules and the energy of the highest occupied molecular orbital is briefly discussed.  相似文献   

12.
The photodissociation spectra of the molecular ions of some cycloalkanes are compared with those of the corresponding acyclic alkanes and alkenes. It is shown that the molecular ions of cyclohexane and cycloheptane are cyclic whereas the cyclopentane ring opens upon ionisation. This conclusion is supported by a study of the charge-transfer equilibria: C6D12± + C6H12 ? C6D12 + C6H12±, C5D10± + C5H10 ? C5D10 + C5H10±. It is furthermore shown that the maxima in the photodissociation spectra of the molecular ions of saturated hydrocarbons correspond to different dissociation processes.  相似文献   

13.
通过对Fe3+/Ba2+/Co2+/Zn2+/Cu2+在NH4HCO3-NH3·H2O和NaOH-Na2CO3体系中的热力学分析,得到各金属离子总浓度(cMe)与pH值的关系,确定了2种体系中5种离子完全共沉淀的pH值范围.结果表明:在NH4HCO3-NH3·H2O体系中,Co2+、Zn2+、Cu2+3种离子和氨的配位能力很强,其中Cu2+与氨的配位能力最强,在相同的pH值条件下,Cu2+沉淀困难,5种金属离子的完全共沉淀区域由Cu2+决定.在NaOH-Na2CO3体系中,随总碳浓度(cc)的增加,Ba、Co、Zn、Cu的溶解度都随之减小,当cc=1.0 mol·L-1时,各金属离子完全共沉淀的pH值范围为7.5~11.在两种体系中,Fe的溶解度都是随pH值的增大而减小,最终达到平衡.以NaOH-Na2CO3 为沉淀剂.在pH=10.0的条件下,采用化学共沉淀法合成出了晶粒细小、粒度均匀的Y型纯相结构的平面六角铁氧体微粉.  相似文献   

14.
This article studies the solubility, Hansen solubility parameters (HSPs), and thermodynamic behavior of a naturally-derived bioactive thymoquinone (TQ) in different binary combinations of isopropanol (IPA) and water (H2O). The mole fraction solubilities (x3) of TQ in various (IPA + H2O) compositions are measured at 298.2–318.2 K and 0.1 MPa. The HSPs of TQ, neat IPA, neat H2O, and binary (IPA + H2O) compositions free of TQ are also determined. The x3 data of TQ are regressed by van’t Hoff, Apelblat, Yalkowsky–Roseman, Buchowski–Ksiazczak λh, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The maximum and minimum x3 values of TQ are recorded in neat IPA (7.63 × 10−2 at 318.2 K) and neat H2O (8.25 × 10−5 at 298.2 K), respectively. The solubility of TQ is recorded as increasing with the rise in temperature and IPA mass fraction in all (IPA + H2O) mixtures, including pure IPA and pure H2O. The HSP of TQ is similar to that of pure IPA, suggesting the great potential of IPA in TQ solubilization. The maximum molecular solute-solvent interactions are found in TQ-IPA compared to TQ-H2O. A thermodynamic study indicates an endothermic and entropy-driven dissolution of TQ in all (IPA + H2O) mixtures, including pure IPA and pure H2O.  相似文献   

15.
The Variational theory of mixtures due to Mansoori and Leland is modified to account for translational quantum effects in solution, and this modified form of the theory is applied to the problem of gas solubilities in liquids. The theory is used to derive expressions for the Henry's law constant, the molar heat of solution at infinite dilution, and the partial molar volume at infinite dilution for a solute in a liquid solution. These expressions are applied, over a range of temperatures, to the following systems; H2 in each of Ar, N2, and CH4; He in each of Ar, N2, and CH4; and Ne in each of Ar and N2. Lennard-Jones 6–12 pair potentials are used for these calculations. The Lennard-Jones parameters are taken from gas-phase second virial coefficient data. The results obtained are compared with experimental data and with previous calculations on these systems based on the Leonard-Henderson-Barker theory. The variational results appear to be in better agreement with experiment for the He-containing systems, while the Leonard-Henderson-Barker theory seems better for the other systems. An explanation for this is suggested.  相似文献   

16.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4, and SF6) in tetrahydropyran at the temperature range 0 to 30°C and 101.33 kPa partial pressure of gas are reported. Thermodynamic functions for the solution process (Gibbs energy, enthalpy, and entropies) at 25°C are evaluated from the experimental values of the solubility of gases as mole fraction and their variation with the temperature. Lennard-Jones 6–12 pair potential parameters for tetrahydropyran are estimated by using the scale particle theory (SPT); and experimental solubilities are compared with the calculated values using this model. Experimental solubilities of gases in tetrahydropyran and intermolecular potential parameters are compared with those obtained for the same gases in other cycloethers.  相似文献   

17.
Pure gas solubility and permeability of H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8 in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) were determined as a function of pressure at 35°C. Permeability coefficients of the perfluorinated penetrants are approximately an order of magnitude lower than those of their hydrocarbon analogs, and lower even than those of the permanent gases. In striking contrast to hydrocarbon penetrants, PTMSP permeability to fluorocarbon penetrants decreases with increasing penetrant size. This unusual size‐sieving behavior in PTMSP is attributed to low perfluorocarbon solubilities in PTMSP coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. In general, perfluorocarbon penetrants are less soluble than their hydrocarbon analogs in PTMSP. The difference in hydrocarbon and perfluorocarbon solubilities in high free volume, hydrocarbon‐rich PTMSP is much smaller than in hydrocarbon liquids and liquidlike polydimethylsiloxane. The low solubility of perfluorocarbon penetrants is ascribed to the large size of the fluorocarbons, which inhibits their dissolution into the densified regions of the polymer matrix and reduces the number of penetrant molecules that can be accommodated in Langmuir sites. From the permeability and sorption data, diffusion coefficients were calculated as a function of penetrant concentration. With the exception of H2 and the C3 analogs, all of the penetrants exhibit a maximum in their concentration‐dependent diffusion coefficients. Resolution of diffusion coefficients into a mobility factor and a thermodynamic factor reveals that it is the interplay between these two terms that causes the maxima. The mobility of the smaller penetrants (H2, O2, N2, CH4, and CO2) decreases monotonically with increasing penetrant concentration, suggesting that the net free volume of the polymer–penetrant mixture decreases as additional penetrant is added to PTMSP. For larger penetrants mobility either: (1) remains constant at low concentrations and then decreases at higher penetrant concentrations (C2H6, CF4, and C2F6); (2) remains constant for all concentrations examined (C3H8); or (3) increases monotonically with increasing penetrant concentration (C3F8). Presumably these results reflect the varying effects of these penetrants on the net free volume of the polymer–penetrant system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 273–296, 2000  相似文献   

18.
Solubilities of ternary systems Li+,K+/SO2-4-H2O (1) and Li+,Mg2+/SO42--H2O (2) were investigated by isothermal method at 25°C. Physico-chemical properties of solutions, such as density, refractive index, viscosity, conductivity and pH, were determined. Phase diagram of the system (1) consists of three solubility branches and three crystallization fields corresponding to K2SO4, Li2SO4·H2O and LiKSO4. LiKSO4 is an incongruent compound, and its transition point is estimated graphically to be 45.5–46.0°C. No solid solution of LiKSO4 with Li2SO4·H2O was found in the system. The system (2) is a simple eutonic type. Pitzer model of electrolyte solution was used to check the obtained solubilities. Data comparison gives good agreement. Two equations were used to correlate density, refractive index of the solution with its composition. Differences between measured and calculated values are less than 0.6% for density, 0.15% for the latter.  相似文献   

19.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4 and SF6) in tetrahydrofuran from 0 to 30°C and 101.33 kPa partial pressure of gas are reported. Thermodynamic functions for the solution process (Gibbs energy, enthalpy, and entropies) at 25°C are evaluated from experimental values of gas solubility as mole fractions and their variation with temperature. Lennard-Jones 6–12 pair potential parameters for tetrahydrofuran are estimated using the scale particle theory; experimental solubilities as mole fraction are compared with values calculated using this theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号