首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yb3+-doped MnCl2 and MnBr2 crystals exhibit strong red upconversion luminescence under near-infrared excitation around 10 000 cm(-1) at temperatures below 100 K. The broad red luminescence band is centred around 15 200 cm(-1) for both compounds and identified as the Mn2+ 4T1g-->6A1g transition. Excitation with 10 ns pulses indicates that the upconversion process consists of a sequence of ground-state and excited-state absorption steps. The experimental VIS/NIR photon ratio at 12 K for an excitation power of 191 mW focused on the sample with a 53 mm lens is 4.1% for MnCl2:Yb3+ and 1.2% for MnBr2:Yb3+. An upconversion mechanism based on exchange coupled Yb3+-Mn2+ ions is proposed. Similar upconversion properties have been reported for RbMnCl3:Yb3+, CsMnCl3:Yb3+, CsMnBr3:Yb3+, RbMnBr3:Yb3+, Rb2MnCl4:Yb3+. The efficiency of the upconversion process in these compounds is strongly dependent on the connectivity between the Yb3+ and Mn2+ ions. The VIS/NIR photon ratio decreases by three orders of magnitude along the series of corner-sharing Yb3+-Cl--Mn2+, edge-sharing Yb3+-(Cl-)2-Mn2+ to face-sharing Yb3+-(Br-)3-Mn2+ bridging geometry. This trend is discussed in terms of the dependence of the relevant super-exchange pathways on the Yb(3+)-Mn2+ bridging geometry.  相似文献   

2.
Single crystals of CsCdCl3, CsCdBr3, CsMgBr3, and MgBr2 doped with 0.1/5% Ni2+ were grown by the Bridgman technique and studied by variable-temperature optical absorption and luminescence spectroscopies. At cryogenic temperatures all these systems are dual emitters; i.e., they emit light from two distinct, thermally nonequilibrated excited states. The emitting higher excited state is 1T2g in Ni2+:CsCdCl3 and Ni2+:CsCdBr3 and 1A1g in Ni2+:CsMgBr3 and Ni2+:MgBr2. This crossover manifests itself in a change from red broad-band to yellow sharp-line luminescence, and it is rationalized on the basis of crystal field theory. Temperature-dependent luminescence as well as two-color pump and probe experiments reveal that in Ni2+:CsMgBr3 and Ni2+:MgBr2 the 1T2g state lies only about 70 and 170 cm-1, respectively, above 1A1g. The effect of crystal field strength on thermally activated nonradiative multiphonon relaxation processes in the bromides is examined for both 1A1g/1T2g higher excited state and 3T2g first excited-state emission. Two-color excited-state excitation experiments are used to monitor Ni2+ excited-state absorption transitions originating from 3T2g.  相似文献   

3.
Direct near-IR excitation of Yb(3+) 2F(7/2)-->(2)F(5/2) levels at 10126, 10138, and 10596 cm(-1) in CsMnBr3:0.5%Yb(3+) leads to three types of luminescence at cryogenic temperatures: near-IR Yb(3+) emission and green and red upconverted luminescence. The green luminescence around 20 000 cm(-1) is identified as cooperative Yb(3+) pair upconversion. The broad red upconversion luminescence band centered at 14 700 cm(-1) is ascribed to the 4T(1g)-->6A(1g) transition of Mn(2+). Pulsed measurements indicate a sequence of ground-state absorption and excited-state absorption steps for the red upconversion process. One- and two-color excitation experiments support this, and we conclude that the red upconversion occurs by an exchange mechanism involving Yb(3+) and Mn(2+). The Yb(3+) 2F(5/2)-->(2)F(7/2) near-IR emission around 10 000 cm(-1) is also observed after Mn(2+) excitation at 21 838 cm(-1). This is indicative of a Mn(2+) 4T(1g)--> Yb(3+) 2F(5/2) relaxation process, which is a potential loss process for upconversion efficiency.  相似文献   

4.
Tm2+ doped in CsCaI3 displays unusual optical properties that are characterized by the existence of two metastable 4f-5d excited states in the near-infrared and visible spectral region, respectively. For the first time, a photon upconversion process based on sequential absorption of light by 4f-5d states is reported. The large absorption cross-section of the involved transitions allows highly efficient pumping in the NIR. An efficiency of 11% for the green upconversion luminescence is reached at 10 K, and the upconversion luminescence remains visible by eye up to room temperature. The energy positions of the relevant 4f-5d states and thus the photophysical and light emission properties can be tuned by chemical variation, such as placing the Tm2+ ion into the isostructural CsCaBr3 and CsCaCl3 lattices.  相似文献   

5.
The optical absorption, emission, FT Raman, one-photon excitation, two-photon excitation, and luminescence lifetime measurements are reported for UO(2)Cl(4)(2)(-) in 40:60 AlCl(3)-EMIC (where EMIC identical with 1-ethyl-3-methylimidazolium chloride), a room-temperature ionic liquid. Comparison of the spectra with previous results from single crystals containing UO(2)Cl(4)(2)(-) allowed the characterization of four ground-state vibrational frequencies, two excited-state vibrational frequencies, and the location of eight electronic excited-state energy levels. The vibrational frequencies and electronic energy levels are found to be consistent with the UO(2)Cl(4)(2)(-) ion. Comparison of the one-photon and two-photon excitation spectra, and the relative intensities of the transitions in the emission spectrum indicate that the center of symmetry is perturbed by an interaction with the solvent.  相似文献   

6.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

7.
Near-infrared to visible upconversion luminescence in CsCaCl3:Tm2+, CsCaBr3:Tm2+ and CsCaI3:Tm2+ is presented and analysed. The upconversion process involves exclusively the 4f-5d excited states of Tm2+, which is a novelty among upconversion materials. The presence of more than one long-lived 4f-5d excited state is the prerequisite for this. Multiple emissions from Tm2+ are observed in the title compounds. This is made possible by the favourable energy structure within the 4f-5d states and the low phonon energies of the materials. The energy positions of the relevant 4f-5d states, and thus the photophysical and light emission properties, are affected by the chemical variation along the series. The upconversion efficiency increases from chloride to iodide and the mechanism is found to be a combination of absorption and energy-transfer steps.  相似文献   

8.
An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions.  相似文献   

9.
Resonance Raman studies of Ni2TIED3+ (TIED = tetraiminoethylenedimacrocycle) reveal that many modes couple to the intense electronic transition centered at 725 nm, a feature that is nominally similar to the intense delocalized intervalence absorption bands observed in the same region for Fe2(TIED)L4(5+) and Ru2(TIED)L4(5+) (L is any of several axial ligands). Time-dependent spectral modeling of the Raman and absorption spectra for the nickel compound was undertaken to understand the electronic transition. We were unable to model the Raman and absorption spectra successfully with a single electronic transition, suggesting that the absorption band is made up of two overlapping transitions. Semiempirical electronic structure calculations corroborate the suggestion. Additionally, these calculations indicate that the transitions are in fact ligand-localized transitions, with little metal involvement and no charge-transfer character. Furthermore, the ground-state electronic structure is best described as an identical pair of NiII centers bridged by a radical anion rather than a three-site mixed-valence assembly. Previous EPR studies (McAuley and Xu, Inorg. Chem. 1992, 31, 5549) had indicated primarily ligand character for the radical. The assignments are consistent with the resonance Raman results where the dominant modes coupled to the transitions are assigned as totally symmetric bridge vibrations.  相似文献   

10.
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+-based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.  相似文献   

11.
We present studies of the resonance Raman and electronic luminescence spectra of the [Au(2)(dmpm)(3)](ClO(4))(2) (dmpm = bis(dimethylphosphine)methane) complex, including excitation into an intense band at 256 nm and into a weaker absorption system centered about approximately 300 nm. The resonance Raman spectra confirm the assignment of the 256 nm absorption band to a (1)(dsigma --> psigma) transition, a metal-metal-localized transition, in that nu(Au-Au) and overtones of it are strongly enhanced. A resonance Raman intensity analysis of the spectra associated with the 256 nm absorption band gives the ground-state and excited-state nu(Au-Au) stretching frequencies to be 79 and 165 cm(-1), respectively, and the excited-state Au-Au distance is calculated to decrease by about 0.1 A from the ground-state value of 3.05 A. The approximately 300 nm absorption displays a different enhancement pattern, in that resonance-enhanced Raman bands are observed at 103 and 183 cm(-1) in addition to nu(Au-Au) at 79 cm(-1) The compound exhibits intense, long-lived luminescence (in room-temperature CH(3)CN, for example, tau = 0.70 micros, phi(emission) = 0.037) with a maximum at 550-600 nm that is not very medium-sensitive. We conclude, in agreement with an earlier proposal of Mason (Inorg. Chem. 1989, 28, 4366-4369), that the lowest-energy, luminescent excited state is not (3)(dsigma --> psigma) but instead derives from (3)(d(x2-y2,xy --> psigma) excitations. We compare the Au(I)-Au(I) interaction shown in the various transitions of the [Au(2)(dmpm)(3)](ClO(4))(2) tribridged compound with previous results for solvent or counterion exciplexes of [Au(2)(dcpm)(2)](2+) salts (J. Am. Chem. Soc. 1999, 121, 4799-4803; Angew. Chem. 1999, 38, 2783-2785; Chem. Eur. J. 2001, 7, 4656-4664) and for planar, mononuclear Au(I) triphosphine complexes. It is proposed that the luminescent state in all of these cases is very similar in electronic nature.  相似文献   

12.
Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.  相似文献   

13.
采用溶胶-凝胶(Sol-gel)法制备了Li+共掺杂的Er3+-Yb3+:TiO2粉末.976 nm激光激发下在波长350~1700nm范围内观察到了紫外、蓝色、绿色和红色上转换发光和红外下转换发光.随着Li+共掺杂浓度由0增大到20mol%,Er3+-Yb3+:TiO2的紫外、可见和红外发光强度同步增强.低Li+共掺杂浓度引起的Li+固溶以及高Li+共掺杂浓度引起的相变过程相继破坏了Er3+的晶体场对称性,导致紫外、可见和红外发光显著增强.结果表明共掺杂Li+是一种提高Er3+掺杂材料发光性能的有效方法.  相似文献   

14.
The excited-state intramolecular H-atom transfer reactions of hypocrellins B and A are compared by using time-resolved absorption and fluorescence upconversion techniques. The hypocrellin B photophysics are well described by a simple model involving one ground-state species and excited-state forward and reverse H-atom transfer with a nonfluorescent excited state. We suggest that excited-state conformational changes are coupled to the H-atom transfer in hypocrellin B just as gauche/anti changes are coupled to the H-atom transfer in hypocrellin A.  相似文献   

15.
The effect of Yb3+ co-doping on the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+ was examined. Strong and efficient NIR to green anti-Stokes luminescence was noted in nanocrystalline Gd3Ga5O12:Ho3+, Yb3+ after excitation into the 2F5/2 level of Yb3+ with 978 nm radiation. Weaker blue, red and NIR anti-Stokes luminescence was also observed after 978 nm excitation. An enhancement of the red 5F5 → 5I8 luminescence was observed in the anti-Stokes spectrum compared to the Stokes emission spectrum. This enhancement was attributed to two distinct energy transfer upconversion (ETU) mechanisms which preferentially populate the (5F4, 5S2) and 5F5 levels.  相似文献   

16.
Optical absorption and photoluminescent properties of Ho(3+)/Yb(3+) co-doped tellurite and zinc halide tellurite glasses are investigated. The effect of zinc halides as modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 ((5)F(4), (5)S(2)→(5)I(8)) and 660 ((5)F(5)→(5)I(8)) nm are observed when samples are excited by 976 nm radiation. Zinc halides act as quencher when 976 nm excitation source is used. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case also, zinc halides do not show any improvement. The dependence of upconversion intensities on excitation power and temperature is discussed. The power dependence study shows a quadratic dependence of fluorescence intensity on the excitation power while decrement in emission intensity of different transitions at different rates is observed in temperature dependence study. The possible upconversion mechanisms are also discussed in order to understand the energy transfer between Yb(3+) and Ho(3+) ions.  相似文献   

17.
A variety of spectroscopic and computational techniques have been used to examine the thermochromic transition previously reported for the oxidized state of Mn-dependent superoxide dismutase from E. coli in the presence of substrate analog azide (N(3)-Mn(3+)SOD).[Whittaker, M. M.; Whittaker, J. W. Biochemistry 1996, 35, 6762-6770.] Although previous spectroscopic studies had shown that this thermochromic event corresponds to a change in coordination number of the active-site Mn(3+) ion from 6 to 5 as temperature is increased, the ligand that dissociates in this conversion had yet to be identified. Through the use of electronic absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies, both d-->d and ligand-to-metal charge-transfer (LMCT) transition energies have been determined for native Mn(3+)SOD (possessing a five-coordinate Mn(3+) center) and Y34F N(3)-Mn(3+)SOD (forming a six-coordinate N(3)-Mn(3+) adduct at all temperatures). These two systems provide well-defined reference points from which to analyze the absorption and CD data obtained for N(3)-Mn(3+)SOD at room temperature (RT). Comparison of excited-state spectroscopic data reveals that Mn(3+)SOD and RT N(3)-Mn(3+)SOD exhibit virtually identical d-->d transition energies, suggesting that these two species possess similar geometric and electronic structures and, thus, that azide does not actually coordinate to the active-site Mn(3+) ion at RT. However, resonance Raman spectra of both N(3)-Mn(3+)SOD and Y34F N(3)-Mn(3+)SOD at 0 degrees C exhibit azide-related vibrations, indicating that azide does interact with the active site of the native enzyme at this temperature. To gain further insight into the nature of the azide/Mn(3+) interaction in RT N(3)-Mn(3+)SOD, several viable active-site models designed to promote either dissociation of coordinated solvent, Asp167, or azide were generated using DFT computations. By utilizing the time-dependent DFT method to predict absorption spectra for these models of RT N(3)-Mn(3+)SOD, we demonstrate that only azide dissociation is consistent with experimental data. Collectively, our spectroscopic and computational data provide evidence that the active site of N(3)-Mn(3+)SOD at RT exists in a dynamic equilibrium, with the azide molecule either hydrogen-bonded to the second-sphere Tyr34 residue or coordinated to the Mn(3+) ion. These results further highlight the role that second-sphere residues, especially Tyr34, play in tuning substrate (analog)/metal ion interactions.  相似文献   

18.
Au nanoparticles (NPs) attached β-NaYF(4) nanocrystals codoped with Gd(3+)-Yb(3+)-Tm(3+) were synthesized by a facial solution method. The UV-vis-near-infrared absorption spectrum shows typical surface plasmon resonance band of Au NPs in addition to the characteristic absorption peaks of Yb(3+) ion. X-ray diffraction and selected area electron diffraction results indicate the existence of Au NPs. The transmission electron microscopic image reveals the formation of Au@NaYF(4) nanostructures. Enhanced ultraviolet (UV) upconversion luminescence (UCL) was observed in the nanostructures under the excitation of 980-nm infrared laser. The largest enhancement factor was obtained as 76 for the (6)I(J)→(8)S(7/2) emission of Gd(3+) ions, which was much larger than those emission enhancement factors of Tm(3+). It is for the first time to our knowledge that the emission enhancement of Gd(3+) ions was obtained. Local field enhancement induced by Au NPs was found to be responsible for the UCL enhancement, which is the further experimental evidence of local field enhancement theory. Magnetic measurements of the Au@NaYF(4) nanostructure indicated it would have potential application in magnetic resonance imaging.  相似文献   

19.
The structural and optical properties of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphors prepared by chemical route have been explored. The crystalline structures of the prepared phosphors have been investigated with the help of X-ray diffraction analysis. The presence of different vibrational modes and absorption bands arising due to the transitions from the ground state to different excited states of rare earth ions have been identified using the Raman and UV-VIS-NIR absorption spectra of the developed phosphor, respectively. The concentration quenching effect on the luminescence property of the prepared materials has been explained in detail. The upconversion luminescence property of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphor annealed at different temperatures under 980 nm and 808 nm excitations have been reported. The energy transfer Er3+ → Tm3+, Yb3+ → Er3+ and Tm3+ has been found to be responsible for efficient UC emission. The dipole-dipole interaction is observed to be responsible for the concentration quenching of the luminescence intensity. The effect of annealing temperature on the upconversion luminescence property has been explained in detail. The results suggest that the developed tri-doped phosphor may be suitable in making the efficient NIR to visible upconverter and lighting based optical devices.  相似文献   

20.
A series of ruthenium(II) complexes possessing ligands with an extended pi system were synthesized and characterized. The complexes are derived from [Ru(bpy)3](2+) (1, bpy = 2,2'-bipyridine) and include [Ru(bpy)2(tpphz)](2+) (2, tpphz = tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine), [Ru(bpy)2(dppx)](2+) (3, dppx = 7,8-dimethyldipyrido[3,2-a:2',3'-c]phenazine), [Ru(bpy)2(dppm2)](2+) (4, dppm2 = 6-methyldipyrido[3,2-a:2',3'-c]phenazine), and [Ru(bpy)2(dppp2)](2+) (5, dppp2 = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline). The excited-state properties of these complexes, including their DNA "light-switch" behavior, were compared to those of [Ru(bpy)2(dppz)](2+) (6, dppz = dipyrido[3,2-a:2',3'-c]phenazine). Whereas 2, 3, and 4 can be classified as DNA light-switch complexes, 5 exhibits negligible luminescence enhancement in the presence of DNA. Because relative viscosity experiments show that 2-6 bind to DNA by intercalation, their electronic absorption and emission spectra, electrochemistry, and temperature dependence of the luminescence were used to explain the observed differences. The small energy gap between the lowest-lying dark excited state and the bright state in 2-4 and 6 is related to the ability of these complexes to exhibit DNA light-switch behavior, whereas the large energy gap in 5 precludes the emission enhancement in the presence of DNA. The effect of the energy gap among low-lying states on the photophysical properties of 1-6 is discussed. In addition, DFT and TD-DFT calculations support the conclusions from the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号