首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keggin杂多阴离子电子结构和物化性质与中心原子的 关系   总被引:4,自引:1,他引:4  
使用密度泛函理论中的离散变分方法(DFT-DVM),以(XMo12O40)^n-(X=B,Al,Si,Ge,P,As,S)为例计算了七个Keggin杂多阴离子的电子结构,讨论了中心原子对Keggin阴离子的电子结构、稳定性、氧化还原性和酸性关系。根据计算结果,给出稳定性、氧化还原性强弱顺序,计算给出结果与实验一致。  相似文献   

2.
Electron transfer from the electron donor of p-phenylenediamine (PPD) to the electron acceptor of (H+)3[PMo12O40]3- forms a one-electron-reduced Keggin cluster of [PMo12O40]4-, bearing a S = 1/2 spin, while proton transfer from the proton donor of (H+)3[PMo12O40]3- to the proton acceptor of PPD yielded mono- and diprotonated cations of 4-aminoanilinium (HPPD+) and p-phenylenediammonium (H2PPD2+). By introduction of crown ether receptors during the crystallization process, supramolecular cations of (HPPD+)(crown ethers) and/or (H2PPD2+)(crown ethers) were successfully introduced into three new alpha-[PMo12O40]4- salts of (H2PPD2+)2([12]crown-4)4[PMo12O40]4- (1), (HPPD+)4([15]crown-5)4[PMo12O40]4- (2), and (HPPD+)2(H2PPD2+)([18]crown-6)4[PMo12O40]4- (3) as the countercation. The protonated states of PPD and molecular-assembly structures of the supramolecular cations depended on the size of the crown ethers. In salt 3, a novel mixed-protonated state of HPPD+ and H2PPD2+ was confirmed to be complexed in the cation structure. According to the changes in the cation structures, the anion arrangements were modulated from those of the two-dimensional layer for salt 1 to the isolated cluster for salts 2 and 3. The temperature-dependent magnetic susceptibilities of salts 1-3 were consistent with the isolated spin arrangements of [PMo12O40]4-. The electronic spectra of salts 1-3 indicated the intervalence optical transition from pentavalent Mo(V) to hexavalent Mo(VI) ions within the [PMo12O40]4- cluster. Temperature-dependent electron spin resonance spectra of salt 2 revealed the delocalization-localization transition of the S = 1/2 spin at 60 K. The spin on the [PMo12O40]4- cluster was localized on a specific Mo(V) site below 60 K, which was thermally activated with an activation energy of 0.015 eV.  相似文献   

3.
本文采用DFT和TD-DFT方法研究了Keggin型多酸[SiW12O40]4-光催化劈裂水产氢气机理。计算结果显示反应主要包括四个步骤:(i) 光激发,(ii) 电荷转移和生成单电子还原(OER)中间体,(iii) 生成双电子还原(TER)中间体,(iv)氢气从多酸表面解离和催化剂重生。当第一个电子从甲醇转移到多酸后,后续反应存在均为热力学上有利的放热途径,并推动第二个电子从甲醇自由基,H[SiW12O40]4-或[SiW12O40]5-转移到OER中间体H[SiW12O40]4-或[SiW12O40]5-生成TER中间体[SiW12O40]6-,H[SiW12O40]5-或H2[SiW12O40]4-,并伴随着H2产生。耦合的电子和质子转移路径在能量上最有利。甲醇和水分子的参与有利于H2产生。多酸在整个催化循环中,扮演了光敏剂、催化剂、电子的受体和给体。  相似文献   

4.
The tetrabutylammonium gamma-dodecatungstosilicate has been crystallized in a 6/1 acetonitrile/water solvent. An X-ray single-crystal analysis was carried out on [N(C4H9)4]4-gamma-[SiW12O40] which crystallizes in the orthorhombic system, space group P2(1)2(1)2(1), with a = 19.0881(3) A, b = 21.4435(3) A, c = 26.0799(1) A, V = 10674.9(2) A3, Z = 4, and rho(calcd) = 2.392 g/cm3. The idealized C2v arrangement of the anion results from the rotation of 60 degrees of two trigonal [W3O13] groups in the Keggin anion. Taking as reference the geometrical characteristics of the Keggin anion, it appears that the bond lengths and bonds angles within the four [W3O13] groups are not significantly modified while the mu-oxo junctions between the two rotated groups and those between the two unrotated groups involve more acute and opened W-O-W angles, respectively. The syntheses and 183W NMR characterizations of the mixed gamma-[SiW10Mo2O40]n- compounds corresponding to the oxidized (Mo(VI); n = 4) and to the two electron-reduced (Mo(V); n = 6) anions are reported. Structural analysis by 183W NMR has proved unambiguously that the C2v structure of the gamma-[SiW10O36]8- subunit is retained in both the compounds. The electronic behavior of the series gamma-[SiW10M2E2O36]6- (M = Mo or W; E = O or S) is examined, compared and related to 183W NMR data.  相似文献   

5.
beta-[SiW(12)O(40)](4)(-) (C(3)(v) symmetry) is sufficiently higher in energy than its alpha-isomer analogue that effectively complete conversion to alpha-[SiW(12)O(40)](4)(-) (T(d)) is observed. By contrast, beta- and alpha-[AlW(12)O(40)](5)(-) (beta- and alpha-1; C(3)(v) and T(d), respectively) are sufficiently close in energy that both isomers are readily seen in (27)Al NMR spectra of equilibrated (alpha-beta) mixtures. Recently published DFT calculations ascribe the stability of beta-1 to an electronic effect of the large, electron-donating [AlO(4)](5)(-) (T(d)) moiety encapsulated within the polarizable, fixed-diameter beta-W(12)O(36) (C(3)(v)) shell. Hence, no unique structural distortion of beta-1 is needed or invoked to explain its unprecedented stability. The results of these DFT calculations are confirmed by detailed comparison of the X-ray crystal structure of beta-1 (beta-Cs(4.5)K(0.5)[Al(III)W(12)O(40)].7.5H(2)O; orthorhombic, space group Pmc2(1), a = 16.0441(10) A, b = 13.2270(8) A, c = 20.5919(13) A, Z = 4 (T = 100(2) K)) with previously reported structures of alpha-1, alpha- and beta-[SiW(12)O(40)](4)(-), and beta(1)-[SiMoW(11)O(40)](4)(-).  相似文献   

6.
Xin F  Pope MT  Long GJ  Russo U 《Inorganic chemistry》1996,35(5):1207-1213
Eight tris(organotin)-substituted Keggin tungstosilicate heteropolyanions have been synthesized and characterized by elemental analysis, infrared and M?ssbauer spectroscopy, multinuclear NMR, and X-ray crystallography. The new anions contain alpha- or beta-SiW(9)O(34)(10)(-) moieties and are of two structural types, [(RSn)(3)(SiW(9)O(37))](7)(-) (R, isomer: Ph, alpha-, 1; n-Bu, alpha-, 2; Ph, beta-, 3; n-Bu, beta-, 4) and [(RSnOH)(3)(SiW(9)O(34))(2)](14)(-) (Ph, alpha-, 5; n-Bu, alpha-, 6; Ph, beta-, 7; n-Bu, beta-, 8). Crystals of Cs(4)H(3)[(PhSn)(3)(SiW(9)O(37))].8H(2)O (anion 3) are monoclinic, space group C2/c, with lattice constants a = 48.91(2) ?, b = 12.111(3) ?, c = 20.334(9) ?, beta = 102.30 degrees, and Z = 8. The anion has nominal C(3)(v)() symmetry and has a structure with three corner-shared WO(6) octahedra of the beta-Keggin anion replaced by three PhSnO(5) groups. Crystals of Cs(9)H(5)[(BuSnOH)(3)(SiW(9)O(34))(2)].36H(2)O (anion 6) are tetragonal, space group P&fourmacr;2(1)m, with lattice constants a = b = 29.005(4) ?, c = 13.412(4) ?, and Z = 4. The anion has the anticipated D(3)(h)() symmetry and contains three BuSnOH groups sandwiched between A,alpha-SiW(9)O(34)(10)(-) anions.  相似文献   

7.
一个新的铈砷钨酸盐大阴离子[As4W40O140Ce(H2O)5]^25-   总被引:4,自引:0,他引:4  
薛岗林 《化学学报》2001,59(9):1519-1521
合成了一新的铈砷钨酸盐[As4W40C140Ce(H2O)5]Na25·63H2O,用X射线单晶衍射法及元素分析确定了其结构。其晶胞参数为:a=3.1252(8)nm,b=2.2656(6)nm,c=1.3973(9)nm,α=β=γ90°,V=9.893(7)nm^3,空间群P21/m21/m2/n。在聚阴离子[As4W40O140Ce(H2O)5]^25-中,四个桥连WO6八面体通过相互共享两个顺式氧串联四个B-α-(AsW9O33)^9-形成环配体(As4W40O140)^28-的基本框架,四个B-α-(AsW9O33)^9-并不处在一个平面上,而是上下交错分布的。中心离子Ce(Ⅲ)未完全填充在(As4W40O140)^28-中具有八齿配位能力的S1洞穴中,而是四个桥连的WO6八面体各提供一个端基氧向Ce(Ⅲ)配位,另有五个水分子向Ce(Ⅲ)配位,Ce(Ⅲ)离子的配位数为9,该离具有C2v对称性。  相似文献   

8.
The electrochemistry of the Dawson-like sulfite polyoxometalate anion alpha-[Mo18O54(SO3)2]6-, derived from the TEAH6{alpha-[Mo18O54(SO3)2]} salt (TEAH+ is the triethanolammonium cation; pKa=7.8), has been investigated in aqueous media using cyclic and rotated disk voltammetry at glassy carbon electrodes and bulk electrolysis, with a focus on the pH-dependence for oxidation to alpha-[Mo18O54(SO3)2]4-. In buffered media at pH>or=4, the cyclic voltammetric response for alpha-[Mo18O54(SO3)2]6- reveals two partially resolved one-electron oxidation processes corresponding to the sequential generation of alpha-[Mo18O54(SO3)2]5- and alpha-[Mo18O54(SO3)2]4-. At lower pH, using electrolytes containing sulfuric acid, the two waves coalesce but the individual apparent E0' reversible formal potential values for the two processes can be extracted down to pH 2 by assuming that reversible protonation accompanies fast electron transfer. The results for 2相似文献   

9.
The complex formation of vanadium(IV) with cis-inositol (ino) and the corresponding trimethyl ether 1,3,5-trideoxy-1,3,5-trimethoxy-cis-inositol (tmci) was studied in aqueous solution and in the solid-state. With increasing pH, the formation of [VO(H-2L)], [(VO)2L2H-5]-, [VO(H-3L)]- (L = ino) or [(VO)2L2H-6]2- (L = tmci), [V(H-3L)2]2-, and [VO(H-3L)(OH)2]3- was observed. For the vanadium(IV)/ino system, [(VO)2L2H-7]3- was observed as an additional dinuclear species. The formation constants of these complexes were determined by potentiometric titrations (25 degrees C, 0.1 M KCl). In addition, the vanadium(IV)/ino system was investigated by means of UV-vis spectrophotometric methods. EPR spectroscopy and cyclic voltammetry confirmed this complexation scheme. EPR measurements indicated the formation of three distinct isomers of the non-oxo complex [V(H-3ino)2]2- in weakly basic solution. This type of isomerism, which is not observed for the vanadium(IV)/tmci system, was assigned to the ability of ino to bind the vanadium(IV) center with three alkoxo groups having either a 1,3,5-triaxial or an 1,2,3-axial-equatorial-axial arrangement. The structures of [V(H-3ino)2][K2(ino)2].4H2O (1) and [Na6V(H-3ino)2](SO4)2.6H2O (2) were determined by single-crystal X-ray analysis. In both compounds, the coordination of each ino molecule to the vanadium(IV) center via three axial deprotonated oxygen donors was confirmed. The centrosymmetric structure of the coordination spheres corresponds to an almost regular octahedral geometry with a twist angle of 60 degrees. The crystal structure of the potassium complex 1 represents an unusual 1:1 packing of [V(H-3ino)2]2- dianions and [K2(ino)2]2+ dications, in which both K+ ions have a coordination number of nine and are bonded simultaneously to a 1,3,5-triaxial and an 1,2,3-axial-equatorial-axial site of ino. In 2, the [V(H-3ino)2]2- complexes are surrounded by six Na+ counterions that are bonded to the axial alkoxo oxygens and to the equatorial hydroxy oxygens of the cis-inositolato moieties. The six Na+ centers are further interlinked by bridging sulfate ions. According to EPR spectroscopy, the D3d symmetric structure of the [V(H-3ino)2]2- anion is retained in H2O, in dimethylformamide, and in a mixture of CHCl3/toluene 60:40 v/v.  相似文献   

10.
Several novel compounds with the non-linear optical chromophore 2-amino-5-nitropyridine (2A5NP) and Keggin polyoxoanions (alpha-isomers), having the general formula (2A5NP)(m)H(n)[XM12O40].xH2O, M = Mo, W, were synthesised. Compounds were obtained with X = P, n = 3, m = 3 and 4 and X = Si, n = m = 4 (x = 2-6). Thus, for each of the anions [PMo12O40]3- and [PW12O40]3- two different compounds were obtained, with the same anion and organic counterpart but with a different stoichiometric ratio. These presented different charge transfer properties and thermal stability. All compounds were characterised by spectroscopic and analytical techniques. The single crystal X-ray diffraction structure of (2A5NP)4H3[PMo12O40].2.5H2O.0.5C2H5OH showed that the water solvent molecules and the organic chromophores are assembled via infinite one-dimensional chains of hydrogen bonds with formation of open channels, which accommodate [PMo12O40]3- and ethanol solvent molecules.  相似文献   

11.
A series of protonated and methylated Anderson-type molybdoperiodates as well as the unprotonated [IMo6O24]5- have been synthesized and structurally characterized as tetra-n-butylammonium salts: [(n-C4H9)4N]5[IMo6O24] [monoclinic, space group C2/c, a = 33.6101(3) A, b = 15.2575(1) A, c = 24.0294(2) A, beta = 126.9569(3) degrees , Z = 4], [(n-C4H9)4N]4[IMo6O23(OH)] [monoclinic, space group P21/c, a = 9.5587(1) A, b = 24.1364(2) A, c = 18.2788(2) A, beta = 90.1562(5) degrees , Z = 2], [(n-C4H9)4N]3[IMo6O22(OH)2].2DMF [monoclinic, space group P21/a, a = 17.6105(4) A, b = 15.5432(5) A, c = 29.3316(9) A, beta = 91.475(3) degrees , Z = 4], [(n-C4H9)4N]4[IMo6O23(OMe)].3H2O [orthorhombic, space group Pbca, a = 17.0679(4) A, b = 25.6998(6) A, c = 20.7428(4) A, Z = 4], [(n-C4H9)4N]3[IMo6O22(OMe)2] [monoclinic, space group P21/n, a = 10.4009(1) A, b = 14.6658(3) A, c = 23.5395(4) A, beta = 100.324(1) degrees , Z = 2]. In all of these compounds, the [IMo6O24]5- anion is protonated or methylated selectively at O atoms shared by two Mo atoms. The results have also revealed that the protonated Anderson-type molybdoperiodates readily react with methanol in a very selective manner, while the unprotonated [IMo6O24]5- anion does not react with methanol under similar conditions.  相似文献   

12.
Zhang J  Goh JK  Tan WT  Bond AM 《Inorganic chemistry》2006,45(9):3732-3740
Voltammetric studies on the reduction of alpha and beta isomers of the Keggin polyoxometalate anion [SiW12O40]4- reveal a series of electrochemically reversible processes in acidic aqueous media. In the presence of NO2-, catalytic current is detected in the potential region of the [SiW12O40]4-/5- process. Electronic spectroscopy and simulation of voltammetric data undertaken at variable [NO2-] and [H+] allow the following mechanism to be postulated, [SiW12O40]4- + e- <-->[SiW12O40]5-, H+ + HNO2 <--> NO+ + H2O, NO+ + [SiW12O40]5- --> NO + [SiW12O40]4-. The second-order rate constant for the rate-determining step is faster for the alpha isomer than for the beta one. This may be attributed to the different reversible potentials of -0.144 V (alpha isomer) and -0.036 V vs Ag/AgCl (beta isomer) and, hence, smaller driving force for an assumed outer sphere electron-transfer reaction in the case of beta isomer. A stable, water-insoluble, thin-film [Ru(bipy)3]2[alpha-SiW12O40] chemically modified electrode was generated electrochemically via ion-exchange of [Ru(bipy)3]2+ with Bu4N+ in the [Bu4N]4[alpha-SiW12O40] solid. The first reduction process with this modified electrode gives rise to the reaction [Ru(bipy)3]2[alpha-SiW12O40](solid) + H+(soln) + e- <--> H[Ru(bipy)3]2[alpha-SiW12O40](solid). The need to transfer a proton from the solution to the solid phase for charge neutralization purposes introduces a hydrogen-ion concentration dependence into this reaction, which is not found in the solution-phase study. Nevertheless, the voltammetric catalytic activity with respect to nitrite reduction is retained with the chemically modified electrode. However, nitrite catalysis with the [Ru(bipy)3]2[alpha-SiW12O40]-modified electrode is now independent of concentration of H+, rather than exhibiting a first-order dependence, and full mechanistic details for this process are unknown.  相似文献   

13.
The efficacy of a variety of polyoxometalate anions in selectively precipitating the infectious isoform of the prion protein (PrPSc) over the normal, cellular protein (PrPC) was tested as a means of improving the sensitivity of a conformation-dependent immunoassay (CDI). Experiments utilizing neutralized aqueous solutions containing MgCl2.6H2O and Na2H[PW12O40] (1) indicated that use of the former is detrimental to selectivity, while use of the latter gives optimal selectivity at a concentration of 2.48% w/v, much higher than the 0.31% w/v employed in the current CDI protocol. Similar experiments using Na4[SiW12O40] (2), K5[BW12O40] (3), and Na6[H2W12O40] (4) were performed to probe the role of charge density in polyoxometalate anions possessing the Keggin structure. These, coupled with assignment of solution structures via NMR and infrared spectroscopy, revealed the following trend in optimal concentrations: [HBW11O39]8- < [SiW11O39]8- < [PW11O39]7- = [H2W12O40]6-. Interestingly, use of the salts K10[Zn4(H2O)2(PW9O34)2] (5), Na16[Zn4(H2O)2(P2W15O56)2] (6), and Na27[NaAs4W40O140] (7), containing larger polyoxometalate anions, was found to suppress PrPSc precipitation in a concentration-dependent manner. Taken together, the results suggest a precipitation mechanism wherein Keggin-type anions link multiple PrPSc moieties by binding a somewhat hindered cleft featuring one or more positively charged residues.  相似文献   

14.
Bagai R  Christou G 《Inorganic chemistry》2007,46(25):10810-10818
The Mn12 family of single-molecule magnets (SMMs) has been extended to a fourth isolated member. [Mn12O12(O2CR)16(H2O)4] (1) exhibits three quasi-reversible one-electron-reduction processes at significantly higher potentials than [Mn12O12(O2CMe)16(H2O)4]. This has allowed the previous generation and isolation of the one- and two-electron-reduced versions of 1 to now be extended to the three-electron-reduced complex. For cation consistency and better comparisons, the complete series of complexes has been prepared with NPrn4+ counterions. Thus, complex 1 was treated with 1, 2, and 3 equiv of NPrn4I, and this led to the successful isolation of (NPrn4)[Mn12O12(O2CCHCl2)16(H2O)4] (2), (NPrn4)2[Mn12O12(O2CCHCl2)16(H2O)4] (3), and (NPrn4)3[Mn12O12(O2CCHCl2)16(H2O)4] (4), respectively. Another three-electron-reduced analogue (NMe4)3[Mn12O12(O2CCHCl2)16(H2O)4] (5) was prepared by the addition of 3 equiv of NMe4I to 1. Direct current magnetization data were collected on dried microcrystalline samples of 2-5 and were fit by matrix diagonalization methods to give S = 19/2, D = -0.35 cm(-1), and g = 1.95 for 2; S = 10, D = -0.28 cm(-1), and g = 1.98 for 3; S = 17/2, D = -0.25 cm(-1), and g = 1.91 for 4; and S = 17/2, D = -0.23 cm(-1), and g = 1.90 for 5, where D is the axial zero-field splitting parameter. Thus, the [Mn12]3- complexes 4 and 5 possess significantly decreased absolute magnitudes of both S and D as a result of the three-electron addition to 1, which has S = 10 and D = -0.45 cm(-1). The D value of the series 1-4/5 shows a monotonic decrease with electron addition that is consistent with the progressive loss of MnIII ions, which are the primary source of the molecular anisotropy. Nevertheless, when studied by ac susceptibility techniques, the [Mn12]3- complexes still exhibit frequency-dependent out-of-phase susceptibility signals at < or =2.5 K, indicating them to be single-molecule magnets (SMMs), albeit at lower temperatures compared with 1 (6-8 K range), 2 (4-6 K range), and 3 (2-4 K range); the shifts to lower temperatures reflect the decreasing S and D values upon successive reduction and hence the decreasing energy barrier to magnetization relaxation. Thus, the [Mn12]3- complexes represent a fourth isolated oxidation level of the Mn12 family of SMMs, by far the largest range of oxidation levels yet encountered within single-molecule magnetism.  相似文献   

15.
Qi Y  Li Y  Qin C  Wang E  Jin H  Xiao D  Wang X  Chang S 《Inorganic chemistry》2007,46(8):3217-3230
A series of novel organic-inorganic assemblies, [Zn(Meen)2]2[(4,4'-bipy)Zn2As8V12O40(H2O)] (1), [Zn(en)2(H2O)][Zn(en)2(4,4'-bipy)Zn2As8V12O40(H2O)].3H2O (2), [[Zn(en)3]2[Zn2As8V12O40(H2O)]].4H2O.0.25bipy (3) and [Zn2(en)5][[Zn(en)2][(bpe)HZn2As8V12O40(H2O)]2].7H2O (4) [en = ethylenediamine, Meen = 1,2-diaminopropane, 4,4'-bipy = 4,4'-bipyridine, and bpe = 1,2-bis(4-pyridyl)ethane] constructed from organically modified Zn-substituted polyoxovanadates and zinc organoamine subunits have been synthesized. Each anion cluster of compound 1 is directly linked by the 4,4'-bipy ligand into a one-dimensional (1D) straight chain. The secondary metal complex [Zn(Meen)2]2+ acts as an isolated countercation. The 1D chain structure of 2 is similar to that of 1 but sinuate because of the secondary metal complex [Zn(en)2]2+ decorated on the anion cluster. The en ligands covalently bonding to the surface anion of 3 not only support the secondary metal complex [Zn(en)2]2+ but also coordinate to another anion through the secondary metal complex [Zn(en)2]2+ bridge to form an "eight-shaped" chiral helix. The unprecedented 2D layer of compound 4 with large nanosized inner rectangular cavities [33.669(6) x 14.720(8) A] is successfully achieved through the anion clusters polymerized first into chains by flexible organic ligands and then secondary metal complexes bridged between the chains. The different coordination abilities and geometries of the bidentate organodiamine ligands used in the four-reaction systems play important roles in the formation of the final structures: from straight chains to sinuate chains, to helical chiral chains, and finally to a 2D layer with helices.  相似文献   

16.
Hydrothermal reactions of the V2O5/2,2':6':2"-terpyridine/ZnO/H2O system under a variety of conditions yielded the organic-inorganic hybrid materials [V2O4(terpy)2]3[V10O28].2H2O (VOXI-10), [VO2(terpy)][V4O10] (VOXI-11), and [V9O22(terpy)3] (VOXI-12). The structure of VOXI-10 consists of discrete binuclear cations [V2O4(terpy)2]2+ and one-dimensional chains [V10O28]6-, constructed of cyclic [V4O12]4- clusters linked through (VO4) tetrahedra. In contrast, the structure of VOXI-11 exhibits discrete mononuclear cations [VO2(terpy)]1+ and a two-dimensional vanadium oxide network, [V4O10]1-. The structure of the oxide layer is constructed from ribbons of edge-sharing square pyramids; adjacent ribbons are connected through corner-sharing interactions into the two-dimensional architecture. VOXI-12 is also a network structure; however, in this case the terpy ligand is incorporated into the two-dimensional oxide network whose unique structure is constructed from cyclic [V6O18]6- clusters and linear (V3O5(terpy)3) moieties of corner-sharing vanadium octahedra. The rings form chains through corner-sharing linkages; adjacent chains are connected through the trinuclear units. Crystal data: VOXI-10, C90H70N18O42V16, triclinic P1, a = 12.2071(7) A, b = 13.8855(8) A, 16.9832(10) A, alpha = 69.584(1) degrees, beta = 71.204(1) degrees, gamma = 84.640(1) degrees, Z = 1; VOXI-11, C15H11N3O12V5, monoclinic, P2(1)/n, a = 7.7771(1) A, b = 10.3595(2) A, c = 25.715(4) A, beta = 92.286(1) degrees, Z = 4; VOXI-12, C45H33N9O22V9, monoclinic C2/c, a = 23.774(2) A, b = 9.4309(6) A, c = 25.380(2) A, beta = 112.047(1) degrees, Z = 4.  相似文献   

17.
陈顺玉  陈心琴  林深 《结构化学》2012,31(6):835-842
A new supramolecular compound (4,4'-bipyH)4[SiW12O40](4,4'-bipy) (4,4'-bipy = 4,4'-bipyridine) was synthesized hydrothermally and characterized by single-crystal X-ray diffraction and IR spectrum. The crystallography analysis for the title compound reveals that the crystal crystallizes in monoclinic, space group C2/m with a = 22.2767(12), b = 21.1879(11), c = 15.6942(8) , β = 97.068(3)°, V = 7351.3(7) 3, C50H44N10O40SiW12, Mr = 3659.24, Z = 4, Dc = 3.306 g/cm3, F(000) = 6544, GOOF = 1.137, R = 0.0577 and wR = 0.1579. The title compound consists of a discrete Keggin-type [SiW12O40]4- anion, one 4,4'-bipy and four protonated (4,4'-bipyH)+ cations. The [SiW12O40]4- anion and protonated 4,4'-bipy are connected to form a supramolecular structure by hydrogen bonds. Meanwhile, the title compound exhibits good photocatalytic activity for color degradation of Rhodamine-B dye solution under visible-light irradiation.  相似文献   

18.
The synthesis, isolation, and structural characterization of the fully oxidized sulfite-based polyoxotungstate cluster (Pr4N)4{alpha-[W18O54(SO3)2]}.2CH3CN and the one-electron reduced form (Pr4N)5{alpha-[W18O54(SO3)2]}.2CH3CN has been achieved. alpha-[W18O54(SO3)2]5- was obtained as a Pr4N+ salt by reducing the "Trojan Horse" [W18O56(SO3)2(H2O)2]8- cluster via a template orientation transformation. Acetonitrile solutions of pure alpha-[W18O54(SO3)2]5- also were prepared electrochemically by one-electron bulk reductive electrolysis of alpha-[W18O54(SO3)2]4-. Cyclic voltammetry of alpha-[W18O54(SO3)2]4- and alpha-[W18O54(SO3)2]5- in CH3CN (0.1 M Hx4NClO4) produces evidence for an extensive series of reversible one-electron redox processes, that are associated with the tungsten-oxo framework of the polyoxometalate cluster. Hydrodynamic voltammograms in CH3CN exhibit the expected sign and magnitude of the steady-state limiting current values for the alpha-[W18O54(SO3)2]4-/5-/6- series and confirm the existence of a stable one-electron reduced species, alpha-[W18O54(SO3)2]5-. Employment of the Randles-Sevcik (cyclic voltammetry) and Levich (rotating disk electrode) equations at a glassy carbon electrode (d=3 mm) enable diffusion coefficient values of 3.7 and 3.8x10(-6) cm2 s-1 to be obtained for alpha-[W18O54(SO3)2]4- and alpha-[W18O54(SO3)2]5-, respectively. The tungsten polyoxometalates are highly photoactive, since measurable photocurrents and color changes are detected for both species upon irradiation with white light. EPR spectra obtained from both acetonitrile solution and solid samples, down to temperatures as low as 2.3 K, of the chemically and electrochemically prepared one-electron reduced species provided evidence that the unpaired electron in alpha-[W18O54(SO3)2]5- is delocalized over a number of atoms in the polyoxometalate structure, even at very low temperatures.  相似文献   

19.
Oxidative photocurrents measured upon irradiation by a 7-W visible light (wavelength 312-700 nm) demonstrated that the sulfo-polyoxometalate anion clusters [S2W18O62]4- (1a), [S2Mo18O62]4- (1b), and [SMo12O40]2- (2) may be activated photochemically to oxidize the organic substrates benzyl alcohol, ethanol, and (-)-menthol. In the case of catalytic photooxidation of benzyl alcohol to benzaldehyde in the presence of 1a, quantitative electrochemical methods have identified pathways for the oxidation of reduced forms of 1 generated during the catalysis. More generally, the oxidation pathways P(n+2)- + 2H+ <==> Pn- + H2 and 2P(n+2)- + O2 + 4H+ <==> 2Pn- + 2H2O have been evaluated by monitoring acidified acetonitrile solutions of the 2e(-)-reduced clusters by rotating disk electrode voltammetry under anaerobic and aerobic conditions, respectively. Neither of the reduced forms 1b(2e-) nor 2(2e-) reacted under these conditions. In contrast, 1a(2e-) was oxidized via both pathways, consistent with its more negative redox potential, with the rate of oxidation by air-oxygen being significantly faster than that by H+. The present work demonstrated that the crucial step necessary to oxidize reduced catalyst in photocatalytic reactions involving the anions studied may be achieved or accelerated by application of an external potential more positive than the first redox potential of the polyoxometalate anion. Voltammetric analysis revealed that this in situ electrolytic regeneration of the reduced catalyst is an option that leads to a viable photoelectrocatalytic pathway, even when the H+ and O2 pathways are not available.  相似文献   

20.
Reaction of excess Fe(cp)(2) (cp = eta(5)-C(5)Me(5)) dissolved in Et(2)O with [NHex(4)](4)[S(2)Mo(18)O(62)] in acetonitrile, followed by recrystallization of the precipitated solid from N,N'-dimethylformamide (DMF), leads to isolation of the complex [Fe(cp)(2)](5)[HS(2)Mo(18)O(62)].3DMF.2Et(2)O. The solid has been characterized by microanalysis, by voltammetric analysis, by (1)H NMR, diffuse reflectance infrared, EPR, and M?ssbauer spectroscopies, and by temperature-dependent magnetic susceptibility measurements. The data are consistent with the presence of a paramagnetic [Fe(cp)(2)](+) cation and a diamagnetic two-electron-reduced [HS(2)Mo(18)O(62)](5-) anion. The related salt [NBu(4)](5)[HS(2)Mo(18)O(62)].2H(2)O crystallizes in space group C2/c with a = 25.1255(3) A, b = 15.4110(2) A, c = 35.8646(4) A, beta = 105.9381(4), V = 13353.3(3) A(3), and Z = 4. The (2 e(-), 1 H(+))-reduced anion exists as the alpha-Dawson isomer, and its structure may be compared with those of the oxidized and (4 e(-), 3 H(+))-reduced anions as they exist in [NEt(4)](4)[S(2)Mo(18)O(62)].MeCN and [NBu(4)](5)[H(3)S(2)Mo(18)O(62)].4MeCN, respectively. Overall, the anion expands significantly upon the addition of two and then four electrons. However, the Mo...Mo distances along the bonds which connect the two equatorial belts decrease in the order 3.801, 3.780, and 3.736 A, making these distances the shortest for the three inequivalent sets of corner-sharing octahedra in each anion. This is consistent with the two or four added electrons localizing essentially in molecular orbitals which are bondiing with respect to interactions between the belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号