首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel multidentate amine grafted on silica gel and magnetic microsphere was prepared. Its chemical structure was confirmed by C13 NMR, XPS and FTIR, and the nitrogen content was determined by elemental analysis. It was also used as a ligand for CuCl and successfully catalyzed the atom transfer radical addition of both carbon tetrachloride (CCl4) to methyl methacrylate and methyl trichloroacetate to styrene, repeatedly. The conversion and purity of the product were determined through gas chromatography and 1H NMR, respectively. The immobilized copper catalyst complex was also used in atom transfer radical polymerization of styrene initiated by 1,1,1,3‐tetrachloro‐3‐phenylpropane and methyl methacrylate initiated by methyl 2‐methyl‐2,4,4,4‐tetrachlorobutyrate, respectively. Although the polymerization took place successfully, it did not proceed in a controlled fashion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
原子转移自由基聚合(Atom transfer radical polymerization,ATRP)是一种发展较快的可控/活性聚合技术,现已广泛应用于聚合物分子结构设计及众多功能高分子材料的合成.本文在综述了ATRP的反应机理的基础上,介绍了引发剂、催化剂、配体、单体等对ATRP的影响,同时综述了降低(或去除)金属盐含量的绿色、高效ATRP聚合体系,如引发剂持续再生活化ATRP,电子转移生成(再生)活化剂ATRP,铁催化体系,光催化体系等.近年来发展的无金属光诱导的有机催化ATRP聚合体系也做了综述.  相似文献   

3.
Simplified electrochemical atom transfer radical polymerization (seATRP) using CuIIN-propyl pyridineimine complexes (CuII(NPPI)2) is reported for the first time. In aqueous solution, using oligo(ethylene glycol) methyl ether methacrylate (OEGMA), standard electrolysis conditions yield POEGMA with good control over molecular weight distribution (Đm < 1.35). Interestingly, the polymerizations are not under complete electrochemical control, as monomer conversion continues when electrolysis is halted. Alternatively, it is shown that the extent and rate of polymerization depends upon an initial period of electrolysis. Thus, it is proposed that seATRP using CuII(NPPI)2 follows an electrochemically-triggered, rather than electrochemically mediated, ATRP mechanism, which distinguishes them from other CuIIL complexes that have been previously reported in the literature.

Simplified electrochemical atom transfer radical polymerization (seATRP) using CuII-pyridineimine complexes is reported and follows a previously unreported electrochemically triggered mechanism.  相似文献   

4.
Kinetics of atom transfer radical polymerization (ATRP) with the special emphasis on dynamics of activation and deactivation is discussed. Various mechanistic features of ATRP related to electron transfer processes are presented. Elementary reactions of ATRP process are analyzed.  相似文献   

5.
In Atom Transfer Radical Polymerization (ATRP), Cu0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the CuI activator through a comproportionation reaction, respectively. Cu0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP (eATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in eATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage.

The use of a Cu cathode in eATRP allows exploiting the synergistic effect between electrochemical and chemical stimuli to halt or accelerate polymerizations, reduce energy consumption and achieve control in challenging systems.  相似文献   

6.
We report an electrospray ionization mass spectrometric study of Cu(I) and Cu(II) bipyridine complexes employed in atom transfer radical polymerization. Mass spectra of Cu(I)Br complexed with 2 equiv. of 4,4'-di(5-nonyl)-2,2'-bipyridine (dNbpy) in toluene, methyl acrylate or styrene showed the presence of [Cu(I)(dNbpy)(2)](+) cation and [Cu(I)Br(2)](-) anion. For the Cu(II)Br(2)/2dNbpy system, [Cu(II)(dNbpy)(2)Br](+), [Cu(II)(dNbpy)Br](+), [Cu(I)Br(2)](-), [Cu(II)Br(3)](-) and [Cu(II)(dNbpy)Br(3)](-) species were observed. In addition, for mixed Cu(I)Br/2dNbpy and Cu(II)Br(2)/2dNbpy systems, the negative ion mode showed only the presence of [Cu(I)Br(2)](-) anions, which are potentially formed through halogen exchange between [Cu(II)Br(3)](-) and [Cu(I)(dNbpy)(2)](+). Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The continuous development of more active and stable catalysts in atom transfer radical polymerization (ATRP) has increasingly required a thorough knowledge of concurrent electron transfer reactions that can affect catalyst performance. Special attention is provided in this short review to such processes, including disproportionation, most pronounced in Cu-mediated ATRP, the reduction of radicals to carbanions or oxidation to carbocations, and radical coordination to the metal catalyst resulting in the interplay of controlled radical polymerization mechanisms.  相似文献   

8.
A detailed investigation of the polymerization of allyl methacrylate, a typical unsymmetrical divinyl compound containing two types of vinyl groups, methacryloyl and allyl, with quite different reactivities, was performed with atom transfer radical polymerization (ATRP). Homopolymerizations were carried out in bulk, with ethyl‐2‐bromoisobutyrate as the initiator and with copper halide (CuX, where X is Cl or Br) with N,N,N,N,N″‐pentamethyldiethylenetriamine as the catalyst system. Kinetic studies demonstrated that during the early stages of the polymerization, the ATRP process proceeded in a living manner with a low and constant radical concentration. However, as the reaction continued, the increased diffusion resistance restricted the mobility of the catalyst system and interrupted the equilibrium between the growing radicals and dormant species. The obtained poly(allyl methacrylate)s (PAMAs) were characterized with Fourier transform infrared, 1H NMR, and size exclusion chromatography techniques. The dependence of both the gel point conversion and molecular characteristics of the PAMA prepolymers on different experimental parameters, such as the initiator concentration, polymerization temperature, and type of halide used as the catalyst, was analyzed. These real gel points were compared with the ones calculated according to Gordon's equation under the tentative assumption of equal reactivity for the two types of vinyl groups. Moreover, the microstructure of the prepolymers was the same as that exhibited by those homopolymers prepared by conventional free‐radical polymerization; the fraction of syndiotactic arrangements increased as the reaction temperature was lowered. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2395–2406, 2005  相似文献   

9.
Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene ( 1 ), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with α,α′-dibromoxylene( 2 )/CuBr/2,2-bipyridine(bpy) as initiating system. A linear n versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion in the first order plot are due to physical effects, i.e., to the increase of the viscosity of the reaction medium. The resulting 1-bromo-1-phenylethyl-telechelic poly(4-acetoxystyrene) ( 3 ) is a precursor of the hydrophilic poly(4-vinylphenol) and a potential new macroinitiator.  相似文献   

10.
The quantitative synthesis of tertiary amine-functionalized polymers by atom transfer radical polymerization is reported. Tertiary amine-functionalized polystyrene was prepared with the adduct of 1-(bromoethyl)benzene with 1-(4-dimethyl-aminophenyl)-1-phenylethylene as an initiator in the atom transfer radical polymerization of styrene in the presence of a copper (I) bromide/2,2′-bipyridyl catalyst system. The polymerization proceeded via a controlled free-radical polymerization process to afford quantitative yields of the corresponding tertiary amine-functionalized polystyrene with predictable number-average molecular weights (1600–4400), narrow molecular weight distributions (1.09–1.31), and an initiator efficiency of 0.95. The polymerization process was monitored by gas chromatographic analysis. The tertiary amine-functionalized polymers were characterized by thin-layer chromatography, size exclusion chromatography, potentiometry, and spectroscopy. All experimental evidence was consistent with quantitative functionalization via the 1,1-diphenylethylene derivative. Polymerization kinetic measurements showed that the polymerization reaction followed first-order-rate kinetics with respect to monomer consumption and that the number-average molecular weight increased linearly with monomer conversion. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2058–2067, 2001  相似文献   

11.
Effect of residual copper on stability of molecular brushes with poly(n-butyl acrylate) (PBA) side chains was studied. The brushes were prepared by atom transfer radical polymerization (ATRP) using the grafting-from approach. Although the copper concentration was decreased down to below ten ppm levels by passing through alumina column, further removal was required to prevent crosslinking reactions. Further removal was performed by dialysis or precipitation.  相似文献   

12.
Poly(butyl acrylate) (PBuA) of high molecular weight was synthesized by atom transfer radical polymerization (ATRP) in ethyl acetate. Whereas for low molecular weight polymers, a linear increase of the number‐average molecular weight, Mn, versus conversion and narrow molecular weight distributions indicate the suppression of side reactions, a downward curvature in the plot of Mn versus conversion was observed for high molecular weights (Mn > 50 000). This effect is explained by chain transfer reactions, leading to branched polymers. GPC measurements with a viscosity detector give evidence for the branched structure of high molecular weight polymers obtained in ATRP. In addition, transfer to solvent or monomer is likely to occur.  相似文献   

13.
14.
Highly dilute EXAFS characterisation for the elucidation of species involved in Heck chemistry is demonstrated; the major "monomer" species of Herrmann's acetate-bridged phosphapalladadacycle is characterised and species present during the course of a 50 ppm [Pd] Pd(OAc)2/PBu(t)3 catalysed Heck reaction are presented.  相似文献   

15.
一种反向原子转移自由基聚合引发体系   总被引:1,自引:0,他引:1  
提出了一种反向原子转移自由基聚合(RATRP)引发体系EB iB/SnC l2.2H2O/FeC l3.6H2O。实验发现,EB iB/SnC l2.2H2O与不同配体络合后,均能引发甲基丙烯酸甲酯(MMA)聚合,但引发效率小于10%,所得聚合物的分子量分布较宽(Mw/Mn>2.0)。当加入FeC l3.6H2O后,引发效率大大提高(>80%),聚合速度明显加快,所得聚合物的分子量分布明显变窄(Mn/Mw<1.28),体系呈现活性聚合特征。分别考察了以N,N,N,’N,”N”-(五丙烯酸甲酯基)二乙烯三胺(MA5-DETA)和三苯基膦(PPh3)为络合剂时,EB iB/SnC l2.2H2O/FeC l3.6H2O催化MMA的本体和溶液聚合的规律并探讨了引发机理。  相似文献   

16.
Atom transfer radical polymerization (ATRP) equilibrium constants (K(ATRP)) were determined using modified Fischer's equations for the persistent radical effect. The original Fischer's equations could be used only for low conversion of Cu(I) to X-Cu(II) and consequently for relatively low values of K(ATRP). At higher conversion to X-Cu(II) (>10%) and for larger values of K(ATRP) (>10(-)(7)), modified equations that take into account the changes in catalyst and initiator concentrations should be used. The validity of new equations was confirmed by detailed kinetic simulations. UV-vis spectrometric and GC measurements were used to follow the evolution of X-Cu(II) species and the initiator concentration, respectively, and to successfully determine values of K(ATRP) for several catalysts and alkyl halides. The effect of structure on reactivities of ATRP components is presented.  相似文献   

17.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

18.
Solvent effects on the redox properties of six Cu(I) complexes used as mediators in atom transfer radical polymerization (ATRP) have been studied using cyclic voltammetry. The six ligands used were tris[2-(dimethylamino)ethyl]amine, N-(n-propyl)-2-pyridylmethanimine, N,N,N',N',N'-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyl-triethylenetetramine, 2,2'-bipyridine, and 1,4,8,11-tetraaza-1,4,8,11-tetramethylcyclotetradecan. The solvents used were DMSO, DMF, MeCN, MeOH, IP, and BuOH. Significant solvent effects were observed and quantitatively analyzed in terms of Kamlet-Taft relationships. The resulting Kamlet-Taft equations were found to successfully describe the solvent effects and could thus be used as tools for the design of ATRP in new solvents. The solvent sensitivity of the different ligands and the nature of the solvent effects are also discussed to some extent.  相似文献   

19.
The self-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in cyclohexanone (CHO) in the presence of CuCl2/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) is reported. The linear semilogarithmic plot of ln([M]0/[M]) vs time, the linear increase of number-average molecular weight (Mn) with conversion, and rather narrow molecular weight distributions (MWDs) have been observed, which are in agreement of the characteristics of living/controlled polymerization. The NMR spectrum revealed the existence of terminal chlorine. The chain extension further proved the living characteristic. The polymerization can only be successful using CHO as the solvent, and is well controlled at the temperature as low as 50 °C. The effects of ligand, solvent, temperature and monomer to catalyst ratio are all discussed.  相似文献   

20.
Polymers prepared by atom transfer radical polymerization (ATRP) have well‐defined end groups, predetermined by the initiator used. A typical initiator is an alkyl halide from which the halogen is transferred to one chain end. To remove the halogen end group, dehalogenation with trialkyltin hydride has been used. Procedures for the removal of the polymer halogen end groups are described, one of them being a one‐pot reaction where the dehalogenation of the polymer chain ends occurs immediately after polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号