首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Heterotrimeric GTP-binding proteins (G protein) are known to participate in the transduction of signals from ligand activated receptors to effector molecules to elicit cellular responses. Sustained activation of cAMP-G protein signaling system by agonist results in desensitization of the pathway at receptor levels, however it is not clear whether such receptor responses induce other changes in post-receptor signaling path that are associated with maintenance of AMP levels, i.e. cAMP-forming adenylate cyclase (AC), cAMP-degrading cyclic nucleotide phosphodiesterase (PDE) and cAMP-dependent protein kinase (PKA). Experiments were performed to determine the expression of AC, PDE, and PKA isoforms in SH-SY5Y neuroblastoma cells, in which cAMP system was activated by expressing a constitutively activated mutant of stimulatory G protein (Q227L Gsalpha). Expression of ACI mRNA was increased, but levels of ACVIII and ACIX mRNA were decreased. All of the 4 expressed isoforms of PDE (PDE1C, PDE2, PDE 4A, and PDE4B) were increased in mRNA expression; the levels of PKA RIalpha, RIbeta, and RIIbeta were increased moderately, however, those of RIIalpha and Calpha were increased remarkably. The activities of AC, PDE and PKA were also increased in the SH-SY5Y cells expressing Q227L Gsalpha. The similar changes in expression and activity of AC, PDE and PKA were observed in the SH-SY5Y cells treated with dbcAMP for 6 days. Consequently, it is concluded that the cAMP system adapts at the post-receptor level to a sustained activation of the system by differential expression of the isoforms of AC, PDE, and PKA in SH-SY5Y neuroblastoma. We also showed that an increase in cellular cAMP concentration might mediate the observed changes in the cAMP system.  相似文献   

2.
3.
The gastrointestinal functions of secretin have been fairly well established. However, its function and mode of action within the nervous system remain largely unclear. To gain insight into this area, we have attempted to determine the effects of secretin on neuronal differentiation. Here, we report that secretin induces the generation of neurite outgrowth in pheochromocytoma PC12 cells. The expressions of Tau and beta-tubulin, neuronal differentiation markers, are increased upon secretin stimulation. In addition, secretin induces sustained mitogen-activated protein kinase (MAPK) activation and also stimulates the cAMP secretion. Moreover, the neurite outgrowth elicited by secretin is suppressed to a marked degree in the presence of either PD98059, a specific MAPK/ERK kinase (MEK) inhibitor, or H89, a specific protein kinase A (PKA) inhibitor. Taken together, these observations demonstrate that secretin induces neurite outgrowth of PC12 cells through cAMP- MAPK pathway, and provide a novel insight into the manner in which secretin participates in neuritogenesis.  相似文献   

4.
A CE assay was developed for the detection of adenylyl cyclase (AC) activity stimulated at the AC and G protein-coupled receptor (GPCR) level. In the assay, cell membranes overexpressing GPCR and/or AC were incubated with modulators and substrate ATP to produce cAMP in a dose-dependent manner. In both the CE-UV and a radiochemical assay, the addition of forskolin (FSK) resulted in a two- to three-fold maximum increase in AC activity with EC50s of 4.2 +/- 0.7 and 2.4 +/- 0.7 microM, respectively, demonstrating that similar results were obtained by both assays. GPCR activation was also detected using cell membranes overexpressing AC and the beta2-adrenergic receptor (beta2AR) fused to the stimulatory G protein. Terbutaline (beta2AR agonist) increased the basal rate of cAMP formation 1.7 +/- 0.1-fold resulting in an EC50 of 62 +/- 10 nM. The assay's ability to detect antagonists is demonstrated by the expected right-shifted EC50 of terbutaline by the beta2AR antagonist propranolol. The CE-UV assay offers advantages over the traditional radioactivity assay in terms of safety and labor.  相似文献   

5.
6.
Sphingosylphosphorylcholine (SPC) induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle-like cells expressing α-smooth muscle actin (α-SMA) via transforming growth factor-β1/Smad2- and RhoA/Rho kinase-dependent mechanisms. 3-Hydroxy-3-methylglutaryl- coenzyme A reductase inhibitors (statins) have been known to have beneficial effects in the treatment of cardiovascular diseases. In the present study, we examined the effects of simvastatin on the SPC-induced α-SMA expression and Smad2 phosphorylation in hASCs. Simvastatin inhibited the SPC-induced α-SMA expression and sustained phosphorylation of Smad2 in hASCs. SPC treatment caused RhoA activation via a simvastatin-sensitive mechanism. The SPC-induced α-SMA expression and Smad2 phosphorylation were abrogated by pretreatment of the cells with the Rho kinase inhibitor Y27632 or overexpression of a dominant negative RhoA mutant. Furthermore, SPC induced secretion of TGF-β1 and pretreatment with either Y27632 or simvastatin inhibited the SPC-induced TGF-β1 secretion. These results suggest that simvastatin inhibits SPC-induced differentiation of hASCs into smooth muscle cells by attenuating the RhoA/Rho kinase-dependent activation of autocrine TGF-β1/Smad2 signaling pathway.  相似文献   

7.
In the present study, we investigated the molecular mechanisms of adenosine for its hair growth promoting effect. Adenosine stimulated the Wnt/β-catenin pathway by modulating the activity of Gsk3β in cultured human dermal papilla cells. It also activated adenosine receptor signaling, increasing intracellular cAMP level, and subsequently stimulating the cAMP mediated cellular energy metabolism. The phosphorylation of CREB, mTOR, and GSK3β was increased. Furthermore, the expression of β-catenin target genes such as Axin2, Lef1, and growth factors (bFGF, FGF7, IGF-1) was also enhanced. The inhibitor study data conducted in Wnt reporter cells and in cultured human dermal papilla cells demonstrated that adenosine stimulates Wnt/β-catenin signaling through the activation of the adenosine receptor and Gsk3β plays a critical role in transmitting the signals from the adenosine receptor to β-catenin, possibly via the Gαs/cAMP/PKA/mTOR signaling cascade.  相似文献   

8.
9.
10.
11.
Heterotrimeric GTP-binding proteins (G proteins) transduce extracellular signals into intracellular signals by activating effector molecules including adenylate cyclases that catalyze cAMP formation, and thus regulate various cellular responses such as metabolism, proliferation, and apoptosis. cAMP signaling pathways have been reported to protect cells from ionizing radiation-induced apoptosis, but however, the protective mechanism is not clear. Therefore, this study aimed to investigate the signaling molecules and the mechanism mediating the anti-apoptotic action of cAMP signaling system in radiation-induced apoptosis. Stable expression of a constitutively active mutant of Gas (GalphasQL) protected gamma ray-induced apoptosis which was assessed by analysis of the cleavages of PARP, caspase-9, and caspase-3 and cytochrome C release in SH-SY5Y human neuroblastoma cells. GasQL repressed the gamma ray-induced down-regulation of Bcl-xL protein, but transfection of Bcl-xL siRNA increased the gamma ray-induced apoptosis and abolished the anti-apoptotic effect of GasQL. GasQL decreased the degradation rate of Bcl-xL protein, and it also restrained the decrease in Bcl-xL mRNA by increasing the stability following ionizing irradiation. Furthermore, prostaglandin E2 that activates Gas was found to protect gamma ray-induced apoptosis, and the protective effect was abolished by treatment with prostanoid receptor antagonist specific to EP2/4R subtype. Moreover, specific agonists for adenosine A1 receptor that inhibits cAMP signaling pathway augmented gamma ray-induced apoptosis. From this study, it is concluded that Galphas-cAMP signaling system can protect SH-SY5Y cells from gamma ray-induced apoptosis partly by restraining down-regulation of Bcl-xL expression, suggesting that radiation-induced apoptosis can be modulated by GPCR ligands to improve the efficiency of radiation therapy.  相似文献   

12.
Cutaneous pigmentation is the major photoprotective mechanism against the carcinogenic and aging effects of UV. Epidermal melanocytes synthesize the pigment melanin, in the form of eumelanin or pheomelanin. Synthesis of the photoprotective eumelanin by human melanocytes is regulated mainly by the melanocortins alpha-melanocortin (alpha-MSH) and adrenocorticotropic hormone (ACTH), which bind the melanocortin 1 receptor (MC1R) and activate the cAMP pathway that is required for UV-induced tanning. Melanocortins stimulate proliferation and melanogenesis and inhibit UV-induced apoptosis of human melanocytes. Importantly, melanocortins reduce the generation of hydrogen peroxide and enhance repair of DNA photoproducts, independently of pigmentation. MC1R is a major contributor to the diversity of human pigmentation and a melanoma susceptibility gene. Certain allelic variants of this gene, namely R151C, R160W and D294H, are strongly associated with red hair phenotype and increased melanoma susceptibility. Natural expression of two of these variants sensitizes melanocytes to the cytotoxic effect of UV, and increases the burden of DNA damage and oxidative stress. We are designing potent melanocortin analogs that mimic the effects of alpha-MSH as a strategy to prevent skin cancer, particularly in individuals who express MC1R genotypes that reduce but do not abolish MC1R function, or mutations in other melanoma susceptibility genes, such as p16.  相似文献   

13.
CD137, which is expressed on activated T cells, plays a critical role in inflammatory responses. However, the exact role that CD137 plays in monocytes is not fully known. Here we studied the expression and function of CD137 in human monocytic THP-1 cells, which we found constitutively expresses CD137 at the mRNA and protein level. Cross-linking of CD137 increased the secretion of IL-8 and TNF-alpha, promoted the expression of CD54 and CD11b, and increased adhesion to extracellular matrix (ECM) proteins. In particular CD137-induced adhesion of THP-1 cells was inhibited by an inhibitor of mitogen-activated protein kinase kinase (MEK), but not by a p38 kinase inhibitor. Taken together, these results show that the adhesion and cytokine production of THP-1 cells induced by CD137 occur via activation of MEK, which results in the activation of ERK-1/2 signaling pathways. Therefore, this study suggests that CD137 induces an activating and migrating signal during inflammatory processes.  相似文献   

14.
Increasing evidence suggests stem cells from human exfoliated deciduous teeth (SHEDs) serve as desirable sources of dentin regeneration. Photobiomodulation (PBM) has shown great potential in enhancing the proliferation and osteogenesis of human bone marrow mesenchymal stem cells (hBMMSCs). However, the specific role of PBM in odontogenic differentiation of SHEDs is little know, and we further investigated potential mechanism of PBM osteo/odontogenisis. A 980 nm diode laser with different energy densities of (0.5, 5, 10 J cm−2) in a 100-mW continuous wave was used for irradiation every 24 h. Osteo/odontogenic differentiation of SHEDs was achieved by performing alkaline phosphatase (ALP) and alizarin red staining (ARS) and osteo/odontogenic markers were also evaluated by qRT-PCR and western blotting. Additionally, western blot and immunohistochemical staining were performed to evaluate the levels of BMP/Smad and Wnt/β-catenin signaling-related proteins. We found that PBM at 5 J cm−1 increased mineral deposition and upregulated the expression of related osteo/odontogenic markers along with the elevated expression of β-catenin and phosphorylation level of Smad1/5/9. Furthermore, Wnt signaling inhibition using DKK1 and BMP signaling inhibition using noggin inhibited PBM-induced osteo/odontogenic marker expression when used individually or jointly. In conclusion, PBM induces the osteo/odontogenic differentiation of SHEDs through cross talk between BMP/Smad and Wnt/β-catenin signaling pathways.  相似文献   

15.
16.
Bis (Bag-3, CAIR), a Bcl-2-interacting protein, promotes the anti-apoptotic activity of Bcl-2 and increased levels of Bis have been observed in several disease models. The involvement of Bcl-2 and some Bcl-2-binding proteins in differentiation has recently been reported. However, the relevance of Bis to cellular differentiation remains unknown. The findings herein show that Bis expression is up-regulated during the differentiation of HL-60 cells. To investigate the effect of Bis expression on differentiation, we established Bis-overexpressing HL-60 cells (HL-60-bis). HL-60-bis cells have a low nuclear: cytoplasmic ratio and indented nucleus in Wright- Giemsa staining, and an increased expression of CD11b in immunofluorescence study, indicating the promotion of differentiation. The overexpression of Bis also resulted in a retarded cell growth rate, accompanied by the accumulation of HL-60 cells at the G0/G1 phase of the cell cycle, which was sustained during the differentiation process. Western blot analysis revealed that the expression of p27, a representative inducer of cell cycle arrest at the G1 phase, was increased 2.5-fold in HL-60-bis cells compared to HL-60-neo cells. These results suggest that the Bis induced growth inhibition of HL-60 cells promotes G0/G1 phase arrest via up-regulation of p27, which seems to be a prerequisite for differentiation. Further studies will be required to define the exact roles of Bis on cellular differentiation more precisely.  相似文献   

17.
Human 8-oxo-G-DNA glycosylase 1 (hOGG1) is a DNA glycosylase to cleave 8-oxo-7,8-dihydroguanine (8-oxo-G), a mutagenic DNA adduct formed by oxidant stresses. Here, we examined hOGG1 protein expression and repair activity to nick a DNA strand at the site of 8-oxo-G during differentiation of hematopoietic cells using HL-60 cells. Overall expression of hOGG1 protein was increased during granulocytic differentiation of HL-60 cells induced by DMSO and monocytic differentiation by vitamine D(3). Greater level of hOGG1 protein was expressed in DMSO-treated cells. However, change in the DNA nicking activity was not in parallel with the change in hOGG1 protein expression, especially in PMA-treated cells. In PMA- treated cells, the level of hOGG1 protein was lowered, even though the DNA nicking activity was elevated, in a manner similar to the changes in serum- deprived HL-60 cells. These results indicate that hOGG1 expression change during differentiation of hematopoietic stem cells for adaptation to new environments. And the DNA cleaving activity may require additional factor(s) other than expressed hOGG1 protein, especially in apoptotic cell death.  相似文献   

18.
The second messenger cAMP has been implicated in numerous cellular processes such as glycogen metabolism, muscle contraction, learning and memory, and differentiation and development. Genetic evidence suggests that the enzyme that produces cAMP, adenylyl cyclase (AC), may be involved in pathogenesis in many of these cellular processes. In addition, these data suggest that membrane-bound ACs may be valuable targets for therapeutics to treat pathogenesis of these processes. The development of a robust real-time adenylyl cyclase assay that can be scalable to high-throughput screening could help in the development of novel therapeutics. Here we report a novel fluorescence-based cyclase assay using Bodipy FL GTPgammaS (BGTPgammaS). The fluorescence of the Bodipy moiety of BGTPgammaS was dramatically enhanced by incubation with the minimal catalytic core of wild-type-AC (wt-AC) and a mutant with decreased purine selectivity (mut-AC), in an AC activation-dependent manner. No increase in fluorescence was observed using Bodipy FL ATPgammaS (BATPgammaS) as substrate for either wt-AC or mut-AC. Using BGTPgammaS, forskolin, Gsalpha.GTPgammaS and the divalent cation Mn(2+) potently enhanced the rate of fluorescence increase in a concentration-dependent manner. The fluorescence enhancement of the Bodipy moiety was inhibited by known inhibitors of AC such as 2'deoxy,3'AMP and 2',5'-dideoxy-3'ATP. Furthermore, the fluorescence assay is adaptable to 96-well and 384-well multiplate format and is thus applicable to high throughput screening methodologies.  相似文献   

19.
The mechanism of caspase-3-dependent apoptosis induced by photodynamic therapy (PDT) of cultured Chinese hamster V79 cells with pheophorbide a (PPa) was investigated. The PPa-PDT induced rapid apoptosis within 30 min after irradiation of cells. This apoptosis was inhibited by the 1O2 quencher N3- and caspase-3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting that 1O2 activated caspase-3 and then caused apoptosis. The intracellular calcium [Ca2+]i chelator (acetoxymethyl)-1,2-bis(o-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA-AM) and the cyclic adenosine monophosphate (cAMP)-increasing agent forskolin also inhibited not only the PPa-PDT-induced activation of caspase-3 but also apoptosis in V79 cells. Furthermore, PPa-PDT-induced cytochrome c release from mitochondria was found to be inhibited by the treatment with BAPTA-AM but not forskolin. These results indicated that [Ca2+]i and cAMP independently serve as regulators for PPa-PDT-induced apoptosis in the upstream of caspase-3.  相似文献   

20.
Sheep latissimus dorsi muscle was electrically trained, thereby inducing fast-to-slow fibre-type transformation. Using a combination of one- and two-dimensional gel electrophoresis techniques with computer analysis, we have analysed altered expression of contractile protein isoforms at protein and mRNA level over a time course of electrical training extending to 5 months. Myosin heavy chain and regulatory myosin light chain analysis showed predominant expression of their slow isoforms (86% and 92%, respectively) after 3 months of training. At the same time point, however, tropomyosin analysis revealed that the slow isoform of the alpha-subunit accounted for 64% of the total alpha expression. Troponin T isoform switching proceeded more slowly over the same time course than tropomyosin and the thick filament proteins studied. Troponin T analysis revealed 5 fast and 2 slow isoforms in the sheep, of which the second slow isoform only became clearly visible after 5 months' training. At this time point the two slow isoforms were more predominant than their fast counterparts. This suggests that a wide heterogeneity of fast and slow isoform combinations are possible in the thin filament of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号