共查询到20条相似文献,搜索用时 0 毫秒
1.
Replacement of linear ligand L in Cu(I)XL system (X = halide or pseudohalide; L = 4,4'-bipyridine or pyrazine) by neutral species Cu(pzc)2(H2O)x (pzc = 2-pyrazinecarboxylate) resulted in mixed-valence Cu(I,II) coordination polymers [Cu2(pzc)2Br(H2O)]n (1) and [Cu3(pzc)2(CN)2(H2O)2 x 2H2O]n (2). Complex 1 has two-dimensional (4,4) topological layer constructed by [CuBr]n chains and Cu(pzc)2(H2O) species, while 2 has a three-dimensional framework formed by linkage of two-dimensional (6,3) layers via ligand-unsupported Cu(I)-Cu(I) interactions. The two-dimensional (6,3) layer in 2 is constructed by zigzag [CuCN]n chains and Cu(pzc)2(H2O)2 species. Cyanides in 2 were produced by oxidative desulfation of SCN- anions. 相似文献
2.
Colacio E Domínguez-Vera JM Lloret F Moreno Sánchez JM Kivekäs R Rodríguez A Sillanpää R 《Inorganic chemistry》2003,42(13):4209-4214
The hydrothermal reaction of K(3)[Fe(CN)(6)], CuCl(2), and 2,2'-bipyridine (bipy) resulted in the formation of a 2D cyanide-bridged heterobimetallic Fe(II)-Cu(I) complex, [Fe(bipy)(2)(CN)(4)Cu(2)], 1. Working in the same conditions, but using 2,2'-bipyrimidine (bpym) instead of bipy and methanol as solvent, we obtained the homometallic Cu(I) complex [Cu(2)(CN)(2)(bpym)](2), 2. The structure of 1 consists of cyanide-bridged Fe(II)-Cu(I) layers, constructed from alternately fused 6 (Fe(2)Cu(4)) and 10 (Fe(2)Cu(8)) metal-membered centrosymmetric rings, in which copper(I) and iron(II) ions exhibit distorted trigonal planar and octahedral cooordination environments, respectively. The formation of 1 can be explained by assuming that, under high pressure and temperature, iron(III) and copper(II) ions are reduced with the simultaneous and/or subsequent substitution of four cyanide ligands by two bipy molecules in the ferricyanide anions. It is interesting to note that 1 is the first cyanide-bridged heterobimetallic complex prepared by solvothermal methods. The structure of 2 consists of neutral 2D honeycomb layers constructed from fused Cu(6)(CN)(4)(bpym)(2) rings, in which copper(I) atoms exhibit distorted tetrahedral geometry. The isolation of 1 and 2, by using K(3)[Fe(CN)(6)] as starting material, demonstrates that hydrothermal chemistry can be used not only to prepare homometallic materials but also to prepare cyanide-bridged bimetallic materials. The temperature dependence of chi(M)T and M?ssbauer measurements for 1 reveal the existence of a high spin <--> low spin equilibrium involving the Fe(II) ions. 相似文献
3.
在160 °C下, 以4"-(4-吡啶基)-3,2":6",3"-三联吡啶 (3-pytpy) 为配体,Cu(OAc)2.H2O为金属盐, 通过水热法在乙腈/水的混合溶剂中合成了一个Cu(I) 配位聚合物 [Cu3(CN)3(3-pytpy)]n (1)。通过元素分析、红外光谱 (IR)、X-射线粉末衍射 (XRD) 和热重分析 (TGA) 对配合物1进行了表征,并用X-射线单晶衍射分析确定了晶体结构。结果表明, 其晶体属单斜晶系, 空间群为P21/c, Mr = 579.03, a = 7.132 (6) ?, b = 17.431 (13) ?, c = 18.388 (13) ?, β = 94.284 (14)°, V =2280 (3) ?3, F(000) =1152, Z = 4, ?(MoKα) = 2.799 mm-1, Dc = 1.687 g/cm3, 最终残差因子R1 = 0.0447 , wR2 = 0.1238。Cu(I) 均为畸变三角形配位模式, 配位原子分别为:三联吡啶配体吡啶环上的N原子、CN-基N原子和另一个CN-基C原子。CN-基桥联Cu(I) 离子形成沿ac平面对角线方向延伸的一维内消旋螺旋链 [Cu(I)-CN]n, 配体3-pytpy则进一步桥联这些一维链形成二维 “波浪型” 网络结构, 2D层以ABAB方式堆积并通过吡啶环间的π...π堆积作用拓展为三维超分子结构。 相似文献
4.
5.
Two novel coordination polymers of Co(II) with dicyanamide (dca) were obtained by the addition of ancillary ligands of pyrazine dioxide (pzdo) and 2-methyl pyrazine dioxide (mpdo) into the Co-dca binary system, respectively. Co[N(CN)(2)](2)(pzdo) (1) crystallizes in the orthorhombic space group of Pnnm (No. 58) with a = 9.4699(5) A, b = 14.9984(3) A, c = 7.4313(7) A, and Z = 4, while Co[N(CN)(2)](2)(mpdo) (2) is in the monoclinic space group C2 (No. 5) with a = 16.5391(4) A, b = 9.6065(2) A, c = 7.5001(2) A, beta = 105.779(1) degrees, and Z = 4. Both complexes contain similar two-dimensional triangular Co-dca layers, which offer rare examples of mixed 1,5-mu- and mu(3)-dca bridging coordination polymers with long-range ferromagnetic ordering below ca. 2.5 K. 相似文献
6.
Hanna JV Boyd SE Healy PC Bowmaker GA Skelton BW White AH 《Dalton transactions (Cambridge, England : 2003)》2005,(15):2547-2556
The tris(triphenylphosphine)copper(I) complexes [(PPh3)3CuX] for X = Cl (1), Br (2), I (3), ClO4 (4), BF4 (5), [(PPh3)3CuCl].CH3CN (1a), [Cu(PPh3)3(CH3CN)]X for X = ClO4 (6), BF4 (7), and [Cu(PPh3)3(CH3CN)]X.CH3CN for X = SiF5 (8), PF6 (9) have been studied by solid state 31P CP/MAS NMR spectroscopy together with single crystal X-ray diffraction for compounds (6)-(9), the latter completing the availability of crystal structure data for the series. Compounds (1)-(5) form an isomorphous series in space group P3 (a approximately 19, c approximately 11 A) with three independent molecules in the unit cell, all disposed about 3-fold symmetry axes. Average values (with estimated standard deviations) for the P-Cu-P, P-Cu-X bond angles and Cu-P bond lengths in compounds (1)-(3) are 110.1(6) degrees, 108.8(6) degrees and 2.354(8)A and 115.2(6) degrees, 102.8(9) degrees and 2.306(9)A for compounds (4) and (5). For the acetonitrile solvated compound (1a), the corresponding parameters are 115(4) degrees, 103(3) degrees and 2.309(3)A. The solid state 31P CP/MAS NMR quadrupole distortion parameters, dnu Cu, for (1)-(3) and (1a) are all less than 1 x 10(9) Hz2, despite the changes in donor properties of the halide in (1)-(3), and the coordination geometry of the P3CuX core in (1a). Change of anion to ClO4- and BF4- in compounds (4) and (5) results in a significant increase of dnu Cu to 4.4-5.2 10(9) Hz2 and 5.2-6.0 x 10(9) Hz2, respectively. Compounds (6) and (7) crystallise as isomorphous [Cu(PPh3)3(CH3CN)]X salts in space group Pbca, (a approximately 17.6, b approximately 22.3, c approximately 24.2 A), while compounds (8) and (9) crystallize as isomorphous acetonitrile solvated salts [Cu(PPh3)3(CH3CN)]X.CH3CN in space group P1(a approximately 10.5, b approximately 13.0, c approximately 19.5 A, alpha approximately 104, beta approximately 104, gamma approximately 94 degrees). The P3CuN angular geometries in all four compounds are distorted from tetrahedral symmetry with average P-Cu-P, P-Cu-N angles and Cu-P bond lengths of 115(4) degrees, 103(4) degrees and 2.32(1)A, with dnu Cu ranging between 1.3 and 2.5 x 10(9) Hz2. The solid state 29Si CP/MAS NMR spectrum of the pentafluorosilicate anion in compound (8) is also reported, affording 1J(29Si, 19F) = 146 Hz. 相似文献
7.
Kuo CK Liu IP Yeh CY Chou CH Tsao TB Lee GH Peng SM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(5):1442-1451
The neutral, monocationic, and dicationic linear trinuclear ruthenium compounds [Ru(3)(dpa)(4)(CN)(2)], [Ru(3)(dpa)(4)(CN)(2)][BF(4)], [Ru(3)(dpa)(4)Cl(2)][BF(4)], and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) (dpa=the anion of dipyridylamine) have been synthesized and characterized by various spectroscopic techniques. Cyclic voltammetric and spectroelectrochemical studies on the neutral and oxidized compounds are reported. These compounds undergo three successive metal-centered one-electron-transfer processes. X-ray structural studies reveal a symmetrical Ru(3) unit for these compounds. While the metal--metal bond lengths change only slightly, the metal--axial ligand lengths exhibit a significant decrease upon oxidation of the neutral complex. The electronic configuration of the Ru(3) unit changes as the axial chloride ligands are replaced by the stronger "pi-acid" cyanide axial ligands. Magnetic measurements and (1)H NMR spectra indicate that [Ru(3)(dpa)(4)Cl(2)] and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) are in a spin state of S=0 and [Ru(3)(dpa)(4)Cl(2)][BF(4)], [Ru(3)(dpa)(4)(CN)(2)], and [Ru(3)(dpa)(4)(CN)(2)][BF(4)] are in spin states of S=1/2, 1, and 3/2, respectively. These results are consistent with molecular orbital (MO) calculations. 相似文献
8.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN– ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively. 相似文献
9.
10.
Carranza J Sletten J Brennan C Lloret F Cano J Julve M 《Dalton transactions (Cambridge, England : 2003)》2004,(23):3997-4005
Three new copper(ii) complexes of formula [Cu(tppz)(NCO)(2)].0.4H(2)O (1), [Cu(2)(tppz)Br(4)](2) and [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)].7H(2)O (3)[tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; C(5)O(5)(2-) = croconate, dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione] have been synthesised and structurally characterized by X-ray diffraction methods. The structure of complex is made up of neutral [Cu(tppz)(NCO)(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper distance of 3.9244(4) angstroms. The structure of complex 1 consists of neutral tppz-bridged [Cu(2)(tppz)Br(4)] dinuclear units, the copper-copper separation across tppz being 6.6198(1) angstroms. The dinuclear units are further connected through weak, double out-of-plane Cu-Br...Cu bridges [Br(1)...Cu(1a) 4.0028(17) angstroms] creating tetranuclear entities, the copper-copper separation through this interaction being 4.3299(21) angstroms. The structure of complex 3 is built of neutral [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)] trinuclear units and uncoordinated water molecules. Tppz and one of the croconate groups act as bridging ligands, the former exhibiting the bis-terdentate coordination mode and the latter adopting an unusual asymmetrical bis-bidentate bridging mode through three adjacent oxygen atoms. The other two croconate groups exhibit the bidentate coordination mode. The intramolecular copper-copper separations are 6.5417(9)(across tppz) and 4.3234(9) angstroms (through bis-bidentate croconato). The magnetic properties of 2 and 3 have been investigated in the temperature range 1.9-300 K. The magnetic behaviour of complex 2 is that of an antiferromagnetically coupled copper(II) dimer (J = -40.9 cm(-1), the Hamiltonian being H = -JS(A).S(B)). In the case of compound , the chi(M) T vs. T plot is typical of an overall antiferromagnetic coupling with a low-lying spin doublet being fully populated at T < 10 K. The values of the intramolecular antiferromagnetic interactions in 3 are -19.9 (across tppz) and -32.9 cm(-1)(through bridging croconato). Density functional type calculations were performed on model dinuclear fragments of 3 in order to analyze the efficiency of the exchange pathways involved and also to substantiate the coupling parameters. 相似文献
11.
Sokolov FD Babashkina MG Safin DA Rakhmatullin AI Fayon F Zabirov NG Bolte M Brusko VV Galezowska J Kozlowski H 《Dalton transactions (Cambridge, England : 2003)》2007,(41):4693-4700
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RC(S)NHP(S)(OiPr)(2) [R = morpholin-N-yl (HL(a)), piperidin-N-yl (HL(b)), NH(2) (HL(c)), PhCH(2)NH (HL(d))] with Cu(PPh(3))(3)I in aqueous EtOH/CH(2)Cl(2) leads to mononuclear [Cu(PPh(3))(2)L-S,S'] complexes. Using copper(i) iodide instead of Cu(PPh(3))(3)I, polynuclear complexes [Cu(n)(L-S,S')(n)] were obtained. The structures of these compounds were investigated by ES-MS, elemental analyses, 1H and 31P NMR in solution, IR and 31P solid-state MAS NMR spectroscopy. The crystal structures of [Cu(3)L(3)(a)] and [Cu(PPh(3))(2)L(b)] were determined by single-crystal X-ray diffraction. 相似文献
12.
《Polyhedron》1988,7(21):2217-2219
Trimethylsilylaklylethers, Me3SiOR (R = Me, Et) and hexamethyldisiloxane react with NbCl5 in dichloromethane under ambient conditions to give readily isolable mono-alkoxides, [NbCl4(OR)]2 (R = Me, 1; Et, 2) and the thermally sensitive siloxide [NbCl4(OSiMe 3)]2 (3), respectively. At 80°C in 1,2-dichloroethane, 1–3 undergo efficient conversion to [Nb(O)Cl3] with elimination of RCl. In acetonitrile solution, the reaction of NbCl5 with (Me3Si)2O proceeds smoothly to give [Nb(O)Cl3(CH3CN)2] which is readily converted to [Nb(O)Cl3(THF)2] upon dissolution in tetrahydrofuran (THF). 相似文献
13.
Günther A Isaeva A Baranov AI Ruck M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(23):6382-6388
Shiny black, air‐insensitive crystals of tellurium‐rich one‐dimensional coordination polymers were synthesized by melting a mixture of the elements with TeCl4. The compounds [Ru(Te9)](InCl4)2 and [Ru(Te8)]Cl2 crystallize in the monoclinic space group type C2/c, whereas [Rh(Te6)]Cl3 adopts the trigonal space group type R$\bar 3Shiny black, air-insensitive crystals of tellurium-rich one-dimensional coordination polymers were synthesized by melting a mixture of the elements with TeCl(4). The compounds [Ru(Te(9))](InCl(4))(2) and [Ru(Te(8))]Cl(2) crystallize in the monoclinic space group type C2/c, whereas [Rh(Te(6))]Cl(3) adopts the trigonal space group type R ?3c. In the crystal structures, linear, positively charged [M(m+) (Te(n)(±0))] (M=Ru, m=2; Rh, m=3) chains run parallel to the c axes. Each of the uncharged Te(n) molecules (n=6, 8, 9) coordinates two transition-metal atoms as a bridging bis-tridentate ligand. Because the coordinating tellurium atoms act as electron-pair donors, the 18-electron rule is fulfilled for the octahedrally coordinated transition-metal cations. Based on DFT calculations, the quantum theory of atoms in molecules (QTAIM) and the electron localizability indicator (ELI) provide insight into the principles of the polar donor bonding in these complexes. Comparison with optimized ring geometries reveals substantial tension in the coordinating tellurium molecules. 相似文献
14.
15.
Safaa El‐din H. Etaiw Hassan Marie Elsayed M. Shalaby Rabie S. Farag Fatma A. Elsharqawy 《应用有机金属化学》2019,33(9)
Orange prismatic crystals of the supramolecular coordination polymer (SCP) ∞3[Cu(CN)2(Me3Sn)(Pyz)], SCP 1 , were synthesized using a self‐assembly method under ambient conditions. Nanosized 1 was obtained using the same molar ratio in water by ultrasonic irradiation. SCP 1 was characterized using single‐crystal X‐ray diffraction, elemental analysis, thermal analysis and Fourier transform infrared spectroscopy. SCP 1 and its nanosized 1 particles were also examined using powder X‐ay diffraction and scanning electron microscopy. The luminescence emission of SCP 1 was studied as well as its use as a sensor for the detection of common organic solvents and metal ions. Also, the catalytic activities of nanosized 1 towards various organic dyes were investigated under ambient conditions, UV irradiation and ultrasonic irradiation. Nanosized 1 as a heterogeneous nanoparticle catalyst exhibits high catalytic activity for the degradation of eosin‐Y and acid blue dyes. The mechanism of degradation investigated using various scavenger techniques is proposed and discussed. The catalytic oxidation process is mainly caused by ?OH radicals. 相似文献
16.
Synthesis and Crystal Structure of the Tetrameric Nitrido Complex [Cu(CH3CN)4]2[W4N4Cl14(CH3CN)2] . The title compound has been prepared by the reaction of CuCl with WNCl3 in acetonitrile solution, forming red, moisture sensitive crystals. They were characterized by IR spectroscopy and by an X-ray structure determination. Space group I2/a, Z = 4, 2 027 observed unique reflections, R = 0.049. Lattice dimensions at -80°C: a = 2 527.0, b = 971.9, c = 2 137.5 pm, β = 106.01°. The compound consists of [Cu(CH3CN)4]+ ions, which are arranged to form strands, and of anions [W4N4Cl14(CH3CN)2]2?, in which the tungsten atoms were located at the vertices of a square and are linked with one another via linear W?N? W bridges. Two of the four tungsten atoms have four chlorine atoms as terminal ligands, the other two tungsten atoms have three chlorine atoms and an acetonitrile molecule as terminal ligands. 相似文献
17.
18.
Crystal Structures of the Terpyridine Complexes [Cd(terpy)Cl2], [Cu(terpy)(CN)Cl], and [Cu(terpy)][Cu(CN)3] · H2O By reaction of cadmium chloride with 2,2′ : 6′,2″-terpyridine (“terpy”) in water/acetone crystals of [Cd(terpy)Cl2] ( 1) were formed. The compound crystallizes monoclinic, space group P21/c, a = 1111.70(10), b = 823.10(7), c = 1643.00(14) pm, β = 93.913(1)°, Z = 4. Starting from mixtures of different molar ratios of copper(II) chloride, terpyridine, and KCN in water/methanole, two complexes of different composition were obtained. At the molar ratio of 1 : 1 : 2 a copper(II) coordination compound with both halide and pseudohalide ligands, [Cu(terpy)(CN)Cl] ( 2 ), was formed which also crystallizes monoclinic, P21/c, a = 1065.6(3), b = 824.6(2), c = 1644.5(7) pm, β = 98.214(3)°, Z = 4. At a molar ratio of 1 : 1 : 10 a partial reduction of copper(II) occured with formation of a mixed valency compound [Cu(terpy)][Cu(CN)3] · H2O ( 3 ) which crystallizes in the hexagonal space group P6522, with a = b = 800.29(1), c = 4771.05(7) pm, Z = 6. Compounds 1 and 2 are structurally similar, the coordination of the metal atoms is square pyramidal. Networks are formed by hydrogen bridges. In 3 the copper(II) ions show a distorted square planar coordination by the three N atoms of the terpy ligand and one N atom of a bridging CN– group, the copper(I) atoms, however, show trigonal planar coordination by three CN– ligands to which the water molecules are bonded by hydrogen bridges. Thus helical chains are formed which stretch in the direction of the screw axes. The EPR spectrum of 3 was measured. 相似文献
19.
The novel complex [Cu(men)2][Cu2Cd2Cl2(CN)6] (I) was isolated from the aqueous-ethanol system containing CuCl2, men (men = N-methylethane-1,2-diamine) and K2[Cd(CN)4] in the presence of dilute hydrochloric acid and chemically and spectroscopically characterised. The crystal structure of I consists of [Cu 2 I (CN)6] and [Cd2Cl2(CN)6] building units bridged by cyanide ligands and forms a three-dimensional skeleton with cavities. [Cu(men)2]2+ cations in which two men ligands are chelated (mean Cu-N is 2.033(6) Å) are located in the cavities. The coordination polyhedron around the Cu(II) atoms is formed as a tetragonal bipyramidal by two weaker axial Cu-Cl bonds (2.8642(12) Å) with chlorido ligands from the skeleton. The Cu(I) and Cd(II) atoms in the skeleton exhibit tetra-(CuC4 chromophore) and penta-coordination (CdN3Cl2), respectively. The temperature-dependent susceptibility measurements indicate a Curie-Weiss-like behaviour and the presence of weak anti-ferromagnetic interaction. 相似文献
20.
Structurally Chemical Investigation of Monoammin Copper (I) Complexes : [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 The preparation and the properties of [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 are described. I.R. and Raman spectra have been recorded and assigned. According to X-ray powder diagrams, [CuNH3]2[Pt(CN)6] crystallizes in the trigonal space group D–P3 ml, a = 7.771, c = 5.988 Å, Z = 1. According to the spectroscopic and crystallographic data, it is concluded that the CuI ion is coordinated with one NH3 group and with the N atoms of the cyanometallate anions. The coordination number of the Cu+ is 4 in [CuNH3]2[Pt(CN)6] and 3 in [CuNH3]2[Pt(CN)4]. In the Cu3[Co(CN)6] · 2 NH3 complex two Cu atoms have the coordination number 2, the third Cu atom 4. 相似文献