首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Letter describes the formation of pseudo[3]rotaxanes containing calix[4]-bis-crowns, exhibiting a 1,3-alternate conformation and large crown cavities, and secondary ammonium ions. The first and second association constants of pseudo[3]rotaxane formation are moderate (K1 = 175, K2 = 100 M−1) and are higher than that of the corresponding pseudo[2]rotaxane (K = 24 M−1), consisting of a calix[4]-mono-crown and the same secondary ammonium ion.  相似文献   

2.
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross-linker reagent. The dinuclear complex (PdMC)2 was prepared by one-step macrocyclization followed by the double palladation reaction. 1H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6-disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4-vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross-linker (PdMC-VP)2 . Radical co-polymerization of VP and t-butylstyrene in the presence of (PdMC-VP)2 afforded a stable rotaxane cross-linked polymer (RCP). An elastic RCP was also prepared by using n-butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross-linked polymers.  相似文献   

3.
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross‐linker reagent. The dinuclear complex (PdMC)2 was prepared by one‐step macrocyclization followed by the double palladation reaction. 1H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6‐disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4‐vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross‐linker (PdMC‐VP)2 . Radical co‐polymerization of VP and t‐butylstyrene in the presence of (PdMC‐VP)2 afforded a stable rotaxane cross‐linked polymer (RCP). An elastic RCP was also prepared by using n‐butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross‐linked polymers.  相似文献   

4.
Three new copper(I)-assembled [2]rotaxanes incorporating the same macrocycle and different axes containing a bipy, a phen or a terpy have been synthesized thanks to CuAAC reaction for attaching the stoppers. The influence of the nature of the base used for the stoppering reaction was investigated on the formation of the bipy-containing rotaxane. The yield of the [2]rotaxane synthesis was increased when using a phen as a coordinating unit in the thread with [Cu(CH3CN)4](PF6) as catalyst. The strong influence of the nature of the catalyst was clearly evidenced for the formation of the terpy rotaxane, increasing the yield of the stoppering reaction from 0 to 95% by just substituting the Cu(I) catalyst. Finally, the best conditions found for our systems are the use of Na2CO3 as a base and Cu(tren??)Br as a catalyst.  相似文献   

5.
A one‐pot reaction of the A1/A2‐thiopyridyl pillar[5]arene L with silver(I) trifluoroacetate in the presence of the linear dinitrile guest C8 , [CN(CH2)nCN, n=8], afforded the first example of a two‐dimensional (2D) poly‐pseudo‐rotaxane {[(μ4‐Ag)2( C8 @ L )2(μ ‐C8 )](CF3CO2)2}n. Surprisingly, in this structure the C8 guest not only threads into the pillar[5]arene unit but also crosslinks the 1D coordinative polymeric arrays. The formation of the 2D poly‐pseudo‐rotaxane is driven by an adaptive rearrangement of the components that minimizes the steric clashes not only between the threaded guests but also between the threaded and crosslinked guests where crosslinking occurs. A pathway for the formation of the 2D poly‐pseudo‐rotaxane is proposed.  相似文献   

6.
A novel Zn(Ⅱ)-porphorin-cored [5]rotaxane with platinum-acetylide as linkage was constructed. The obtained [5]rotaxane performed different morphologies in different solvents. In addition, the ordered morphologies generated from [5]rotaxane exhibited the morphology evolution by time.  相似文献   

7.
Two strategies for the design of new pillar[5]arene-based mechanically self-interlocked molecules (MSMs) are reported here. The first strategy is based on the construction of an intermediate pseudo[1]rotaxane followed by the desired bis-[1]rotaxane. The other one is based on the construction of the desired bis-[1]-rotaxane directly via a condensation reaction through host-guest interactions between a mono-functionalized pillar[5]arene and the axle. This compound has interesting self-assembly properties in methanol and some extended applications of this compound will be reported in the near future.  相似文献   

8.
《中国化学快报》2023,34(3):107632
Here we use nor-seco-cucurbit[10]uril (ns-CB[10]) based ternary complexation to construct [5]rotaxane, linear supramolecular dynamic rotaxane polymers and cubic 3D supramolecular organic framework. A [5]rotaxane is constructed by ns-CB[10], TMeCB[6] and short linear derivatives of 4,4′-bipyridinium (M2). ns-CB[10], CB[7] and long linear derivatives of 4,4′-bipyridinium (M3) self-assemble into a linear supramolecular dynamic rotaxane polymer. ns-CB[10] and tetracationic tetrahedral monomer self-assemble and form a three-dimensional supramolecular organic framework. The above results demonstrate that ns-CB[10]-based ternary complexation is a versatile platform to build various supramolecular systems.  相似文献   

9.
A [c2]daisy chain rotaxane with two diarylacetylene cores was efficiently synthesized in 53 % yield by capping a C2-symmetric pseudo[2]rotaxane composed of two diarylacetylene-substituted permethylated α-cyclodextrins (PM α-CDs) with aniline stoppers. The maximum absorption wavelength of the [c2]daisy chain rotaxane remained almost unchanged in various solvents, unlike that of the stoppered monomer, indicating that the two independent diarylacetylene cores were insulated from the external environment by the PM α-CDs. Furthermore, the [c2]daisy chain rotaxane exhibited fluorescence emission derived from both diarylacetylene monomers and the excimer, which implies that the [c2]daisy chain structure can undergo contraction and extension. This is the first demonstration of a system in which excimer formation between two π-conjugated molecules within an isolated space can be controlled by the unique motion of a [c2]daisy chain rotaxane.  相似文献   

10.
A heteroditopic [2]rotaxane consisting of a calix[4]diquinone–isophthalamide macrocycle and 3,5‐bis‐amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane’s interlocked cavity together with Na+, K+, NH4+ and Ba2+ cation recognition capabilities are elucidated by 1H NMR and UV‐visible spectroscopic titration experiments. Upon binding of Ba2+, molecular displacement of the axle’s positively charged pyridinium group from the rotaxane’s macrocyclic cavity occurs, whereas the monovalent cations Na+, K+ and NH4+ are bound without causing significant co‐conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.  相似文献   

11.
The synthesis, structure and anion binding properties of the first calix[4]arene‐based [2]rotaxane anion host systems are described. Rotaxanes 9? Cl and 12? Cl, consisting of a calix[4]arene functionalised macrocycle wheel and different pyridinium axle components, are prepared via adaption of an anion templated synthetic strategy to investigate the effect of preorganisation of the interlocked host’s binding cavity on anion binding. Rotaxane 12? Cl contains a conformationally flexible pyridinium axle, whereas rotaxane 9? Cl incorporates a more preorganised pyridinium axle component. The X‐ray crystal structure of 9? Cl and solution phase 1H NMR spectroscopy demonstrate the successful interlocking of the calix[4]arene macrocycle and pyridinium axle components in the rotaxane structures. Following removal of the chloride anion template, anion binding studies on the resulting rotaxanes 9? PF6 and 12? PF6 reveal the importance of preorganisation of the host binding cavity on anion binding. The more preorganised rotaxane 9? PF6 is the superior anion host system. The interlocked host cavity is selective for chloride in 1:1 CDCl3/CD3OD and remains selective for chloride and bromide in 10 % aqueous media over the more basic oxoanions. Rotaxane 12? PF6 with a relatively conformationally flexible binding cavity is a less effective and discriminating anion host system although the rotaxane still binds halide anions in preference to oxoanions.  相似文献   

12.
A twin-axial hetero[5]pseudorotaxane was constructed based on 1-hexyl-4,40-bipyridinium guest 1 and cucurbit[8]uril(CB[8])and a-cyclodextrin(a-CD).In its structure,CB[8]included two bipyridinium units to realize the twin-axial mode,and the hexyl chain was threaded into the cavity of a-CD.The[5]pseudorotaxane contains two types of macrocyclic hosts while the single axial and twin axial modes co-exist in its structure.The transformation of[5]pseudorotaxane could be realized by the addition of acid and 2,6-dihydroxynaphthalene(HN).  相似文献   

13.
Remote control in an eight-component network commanded both the synthesis and shuttling of a [2]rotaxane via metal-ion translocation, the latter being easily monitored by distinct colorimetric and fluorimetric signals. Addition of zinc(II) ions to the red colored copper-ion relay station rapidly liberated copper(I) ions and afforded the corresponding zinc complex that was visualized by a bright sky blue fluorescence at 460 nm. In a mixture of all eight components of the network, the liberated copper(I) ions were translocated to a macrocycle that catalyzed formation of a rotaxane by a double-click reaction of acetylenic and diazide compounds. The shuttling frequency in the copper-loaded [2]rotaxane was determined to k298=30 kHz (ΔH=62.3±0.6 kJ mol−1, ΔS=50.1±5.1 J mol−1 K−1, ΔG298=47.4 kJ mol−1). Removal of zinc(II) ions from the mixture reversed the system back generating the metal-free rotaxane. Further alternate addition and removal of Zn2+ reversibly controlled the shuttling mode of the rotaxane in this eight-component network where the ion translocation status was monitored by the naked eye.  相似文献   

14.
A novel chemically-controlled [2]rotaxane molecular shuttle was successfully designed and synthesized. A H2S-responsive bulk barrier was introduced between the two identical recognition stations of the [2]rotaxane to prevent dynamic shuttling of the macrocycle. Upon addition of H2S, the complete intramolecular cascade reaction occurs in a controllable manner, resulting in removal of the bulk barrier and the shuttling motion of the macrocycle between the two stations recovers.  相似文献   

15.
Switching between the formation/dissociation of rotaxanes is important to control the function of various types of rotaxane-based materials. We have developed a convenient and simple strategy, the so-called “accelerator addition”, to make a static rotaxane dynamic without apparently affecting the chemical structure. As an interlocked molecule that enables tuning of the formation/dissociation speed, a metallorotaxane was quantitatively generated by the complexation of a triptycene-based dumbbell-shaped mononuclear complex, [PdL2]2+ (L=2,3-diaminotriptycene), with 27C9. As a result of the inertness of the Pd2+-based coordination structure, the metallorotaxane was slowly formed (the static state). This rotaxane formation was accelerated 27 times simply by adding Br as an accelerator (the dynamic state). A similar drastic acceleration was also demonstrated during the dissociation process when Cs+ was added to the metallorotaxane to form the free axle [PdL2]2+ and the 27C9-Cs+ complex.  相似文献   

16.
A zinc porphyrin‐containing [3]rotaxane A was synthesized through a copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Energy donors and acceptor porphyrin were introduced to dibenzo[24]crown‐8 (DB24C8) and dibenzyl ammonium (DBA) units of [3]rotaxane A to understand the intramolecular energy transfer process. Investigations of the photophysical properties of [3]rotaxane A demonstrated that the intramolecular efficient energy transfer readily occurred from the donors on the wheels to the porphyrin center on the axis. The fluorescence of energy donors in the region of 400 to 450 nm was efficiently absorbed by the porphyrin acceptor under irradiation at 345 nm, and finally a red light emission at about 600 nm was achieved. Further investigation indicated that the conformation of [3]rotaxane A was self‐modulated by changing its concentration in CH2Cl2. The triazole groups on the wheel coordinated or uncoordinated to Zn2+ through intramolecular self‐coordination with the change in the concentration of [3]rotaxane A in CH2Cl2. Therefore, this conformational change was reversible in a non‐coordinating solvent such as CH2Cl2 but inhibited in a coordinating solvent such as THF. Such interesting behaviors were rarely observed in porphyrin derivatives. This self‐modulation feature opens up the possibility of controlling molecular conformation by varying concentration.  相似文献   

17.
A new cyclic [4]rotaxane composed of two flexible bis‐macrocycles and two rigid axles is described. Each bis‐macrocycle consists of two rings attached to antipodal meso positions of a central Zn porphyrin through single C? C bonds. Each ring incorporates a 2,9‐diphenyl‐1,10‐phenanthroline chelation site. The axles contain two coplanar bidentate sites derived from the 2,2′‐bipyridine motif. The building blocks were assembled by using a one‐pot threading‐and‐stoppering reaction, which afforded the [4]rotaxane in 50 % yield. The “gathering‐and‐threading” effect of copper(I) was utilised in the formation of a [4]pseudorotaxane, which was immediately converted to the corresponding [4]rotaxane by a quadruple CuAAC stoppering reaction. The rotaxane contains two face‐to‐face zinc porphyrins, which allowed the coordination of ditopic guest substrates. The rotaxane host showed remarkable flexibility and was able to adjust its conformation to the guest size. It can be distended and accommodate rod‐like guests of 2.6 to 15.8 Å in length.  相似文献   

18.
Stable pillar[5]arene-containing [2]rotaxane building blocks with pentafluorophenyl ester stoppers have been efficiently prepared on a multi-gram scale. Reaction of these building blocks with various nucleophiles gave access to a wide range of [2]rotaxanes with amide, ester or thioester stoppers in good to excellent yields. The rotaxane structure is fully preserved during these chemical transformations. Actually, the addition-elimination mechanism at work during these transformations totally prevents the unthreading of the axle moiety of the mechanically interlocked system. The stopper exchange reactions were optimized both in solution and under mechanochemical solvent-free conditions. While amide formation is more efficient in solution, the solvent-free conditions are more powerful for the transesterification reactions. Starting from a fullerene-functionalized pillar[5]arene derivative, this new strategy gave easy access to a photoactive [2]rotaxane incorporating a C60 moiety and two Bodipy stoppers. Despite the absence of covalent connectivity between the Bodipy and the fullerene moieties in this photoactive molecular device, efficient through-space excited state interactions have been evidenced in this rotaxane.  相似文献   

19.
The synthesis of a novel [2]rotaxane host system containing a bis(triazolium)acridine‐based axle component is reported. 1H NMR anion‐binding titrations reveal that the rotaxane is able to recognise selectively the NO3? anion over a range of more basic oxoanions (AcO?, HCO3? and H2PO4?) in a competitive organic–aqueous solvent mixture.  相似文献   

20.
The synthesis and characterization of a tetranuclear Pt complex, cis-trans-cis-trans tetra[μ-2,6-diethynyl-4-nitroaniline-bis(tri(p-tolyl)phosphine) platinum(II)], namely [L2Pt-DENA]4 with L = tri-p-tolylphosphine, is reported. The complex was obtained by the dehydrohalogenative condensation of 2,6-diethynyl-4-nitroaniline (DENA) with cis-[dichlorobis(tri(p-tolyl)phosphine)platinum(II)]. The single crystal structure determination of [L2Pt-DENA]4 indicated the formation of a neutral molecular cycle with four alternating platinum units in cis and trans configurations, all bridged with DENA spacers with the presence of solvent (toluene) crystallization molecules. A twisted tetranuclear cyclic feature was identified. The formation of intermolecular stacks of the tetranuclear complex in solution was assessed by means of nuclear Overhauser enhancement spectroscopy (NOESY) and rotating frame Overhauser effect spectroscopy (ROESY) characterizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号