首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide range of cellular functions are thought to be regulated not only by the activity of membrane proteins, but also by the local membrane organization, including domains of specific lipid composition. Thus, molecules and drugs targeting and disrupting this lipid pattern, particularly of the plasma membrane, will not only help to investigate the role of membrane domains in cell biology, but might also be interesting candidates for therapy. We have identified three 4-substituted cholesterol derivatives that are able to induce a domain-disrupting effect in model membranes. When applied to giant unilamellar vesicles displaying liquid-ordered-liquid-disordered phase coexistence, extensive reorganization of the membrane can be observed, such as the budding of membrane tubules or changes in the geometry of the domains, to the point of complete abolition of phase separation. In this case, the resulting membranes display a fluidity intermediate between those of liquid-disordered and liquid-ordered phases.  相似文献   

2.
Biological membranes consist of lipid bilayers with liquid-ordered and liquid-disordered phases. It is believed that cholesterol controls the size of the microdomains in the liquid-ordered phase and thereby affects the mobility as well as the permeability of the membrane. We study this process in a model system consisting of the nonionic surfactant C(12)E(5) and water in the lamellar phase. We measure the diffusion of fluorescent probe molecules (rhodamine B) by fluorescence correlation spectroscopy. For different surfactant to water ratios, we measure how the molecular mobility varies with the amount of cholesterol added. We find that a reduction of the diffusion coefficient is already detectable at a molar ratio of 8 mol % cholesterol.  相似文献   

3.
This paper records what is believed to be the first evidence for the reorganization of the liquid-ordered phase by ethanol. Specifically, ethanol has been found to significantly enhance sterol-phospholipid association in liquid-ordered bilayers derived from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) plus cholesterol and also 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) plus cholesterol. The evidence for such reorganization comes from a series of nearest-neighbor recognition (NNR) experiments that have been carried out, where low concentrations of equilibrating lipid dimers (i.e., "reporter molecules") have been used to detect changes in the phase composition of host membranes made from varying mixtures of DPPC/cholesterol, and also DSPC/cholesterol, in the presence and in the absence of ethanol. These findings have important biological implications, which are briefly discussed.  相似文献   

4.
Cell membranes have a nonhomogenous lateral organization. Most information about such nonhomogenous mixing has been obtained from model membrane studies where defined lipid mixtures have been characterized. Various experimental approaches have been used to determine binary and ternary phase diagrams for systems under equilibrium conditions. Such phase diagrams are the most useful tools for understanding the lateral organization in cellular membranes. Here we have used the fluorescence properties of trans-parinaric acid (tPA) for phase diagram determination. The fluorescence intensity, anisotropy, and fluorescence lifetimes of tPA were measured in bilayers composed of one to three lipid components. All of these parameters could be used to determine the presence of liquid-ordered and gel phases in the samples. However, the clearest information about the phase state of the lipid bilayers was obtained from the fluorescence lifetimes of tPA. This is due to the fact that an intermediate-length lifetime was found in samples that contain a liquid-ordered phase and a long lifetime was found in samples that contained a gel phase, whereas tPA in the liquid-disordered phase has a markedly shorter fluorescence lifetime. On the basis of the measured fluorescence parameters, a phase diagram for the 1,2-dioleoyl-sn-glycero-3-phosphocholine/N-palmitoyl sphingomyelin/cholesterol system at 23 °C was prepared with a 5 mol % resolution. We conclude that tPA is a good fluorophore for probing the phase behavior of complex lipid mixtures, especially because multilamellar vesicles can be used. The determined phase diagram shows a clear resemblance to the microscopically determined phase diagram for the same system. However, there are also significant differences that likely are due to tPA's sensitivity to the presence of submicroscopic liquid-ordered and gel phase domains.  相似文献   

5.
Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy was used to image lipid domains in single bilayers without any labeling. On the basis of the molecular packing density difference between liquid-disordered (Ld), liquid-ordered (Lo), and gel (So) phases, clear vibrational contrasts were generated between coexisting domains in a single bilayer of DOPC/DPPC (1:1) and DOPC/DPPC/cholesterol (4:4:2). The method reported here can be potentially applied to study phase segregation in live cell membranes which are highly heterogeneous and dynamic.  相似文献   

6.
用同步辐射小角和宽角X光衍射实验技术研究了由二棕榈酰磷脂酰胆碱(DPPC)和豆固醇所形成的脂质体的液态有序相的结构性质. 结果表明液态有序相的小角X光衍射d值(d-spacing)随着固醇温度和浓度的变化仅有微小的改变. 与凝胶相及液晶相的宽角X光衍射d值相比, 液态有序相的宽角X光衍射d值有更宽的变化范围, 在30到52 °C的温度范围内, 液态有序相的宽角X光衍射d值从0.422 nm变化到0.460 nm. 电子云密度计算表明液态有序相的脂双层厚度和水层厚度都要大于与之平衡共存的液晶相的脂双层厚度和水层厚度. 电子云密度计算结果还表明液态有序相的脂双层厚度随温度升高而降低. 本研究结果对于从定量的角度认识 生物膜的相态及深入认识生物膜中的有序结构具有重要意义.  相似文献   

7.
Naturally occurring long-chain ceramides (Cer) are known to alter the lateral organization of biological membranes. In particular, they produce alterations of microdomains that are involved in several cellular processes, ranging from apoptosis to immune response. In order to induce similar biological effects, short-chain Cer are extensively used in in vivo experiments to replace their long-chain analogues. In this work, we used the combined approach of atomic force microscopy (AFM) and fluorescence correlation spectroscopy (FCS) to investigate the effect of Cer chain length in lipid bilayers composed of sphingomyelin, dioleoyl-phosphatidylcholine, and cholesterol. Our results show that only long-chain Cer, like C18 and C16, are able to segregate from the liquid-ordered phase, forming separate Cer-enriched domains. Conversely, short-chain Cer do not form a separate phase but alter the physical properties of the liquid-ordered domains, decreasing their stability and viscosity and perturbing the lipid packing. These differences may contribute to the explanation of the different physiological effects that are often observed for the long- and short-chain Cer.  相似文献   

8.
Nearest-neighbor recognition experiments, which have been carried out under fluidizing and condensing conditions, using exchangeable dimers derived from 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, and cholesterol, have provided strong evidence that sterol-phospholipid recognition is limited to the liquid-ordered phase.  相似文献   

9.
The lateral membrane organization and phase behavior of the lipid mixture DMPC(di-C(14))/DSPC(di-C(18))/cholesterol (0-33 mol %) with and without an incorporated fluorescence-labeled palmitoyl/farnesyl dual-lipidated peptide, BODIPY-Gly-Cys(Pal)-Met-Gly-Leu-Pro-Cys(Far)-OMe, which represents a membrane recognition model system for Ras proteins, was studied by two-photon excitation fluorescence microscopy. Measurements were performed on giant unilamellar vesicles (GUVs) over a large temperature range, ranging from 30 to 80 degrees C to cover different lipid phase states (all-gel, fluid/gel, liquid-ordered, all-fluid). At temperatures where the fluid-gel coexistence region of the pure binary phospholipid system occurs, large-scale concentration fluctuations appear. Incorporation of cholesterol levels up to 33 mol % leads to a significant increase of conformational order in the membrane system and a reduction of large domain structures. Adding the peptide leads to dramatic changes in the lateral organization of the membrane. With cholesterol present, a phase separation is induced by a lipid sorting mechanism owing to the high affinity of the lipidated peptide to a fluid, DMPC-rich environment. This phase separation leads to the formation of peptide-containing domains with high fluorescence intensity that become progressively smaller with decreasing temperature. As a result, the local concentration of the peptide increases steadily within the confines of the shrinking domains. At the lowest temperatures, where the acyl-chain order parameter of the membrane has already drastically increased and the membrane achieves a liquid-ordered character, an efficient lipid sorting mechanism is no longer supported and aggregation of the peptide into small clusters prevails. We can conclude that palmitoyl/farnesyl dual-lipidated peptides do not associate with liquid-ordered or gel-like domains in phase-separated bilayer membranes. In particular, the study shows the interesting ability of the peptide to induce formation of fluid microdomains at physiologically relevant cholesterol concentrations, and this effect very much depends on the concentration of fluid vs ordered lipid molecules.  相似文献   

10.
The mixing properties of exchangeable phospholipids, derived from 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, with an exchangeable form of cholesterol have been used to monitor the transition from the liquid-disordered to the liquid-ordered phase in cholesterol-containing bilayers, made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-3-phosphocholine, respectively.  相似文献   

11.
3β-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholesterol ordered acyl chains, but slightly less efficiently than cholesterol. Aminocholesterol eliminated the PSM and DPPC gel-to-liquid crystalline phase transition enthalpy linearly with concentration, and the enthalpy approached zero at 30 mol % sterol. Whereas cholesterol was able to increase the thermostability of ordered PSM domains in a fluid bilayer, aminocholesterol under equal conditions failed to do this, suggesting that its interaction with PSM was not as favorable as cholesterols. In ternary mixed bilayers, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), PSM or DPPC, and cholesterol at proportions to contain a liquid-ordered phase (60:40 by mol of POPC and PSM or DPPC, and 30 mol % cholesterol), the average lifetime of trans-parinaric acid (tPA) was close to 20 ns. When cholesterol was replaced with aminocholesterol in such mixed bilayers, the average lifetime of tPA was only marginally shorter (about 18 ns). This observation, together with acyl chain ordering data, clearly shows that aminocholesterol was able to form a liquid-ordered phase with saturated PSM or DPPC. We conclude that aminocholesterol should be a good sterol replacement in model membrane systems for which a partial positive charge is deemed beneficial.  相似文献   

12.
Amphotericin B (AmB) is a well-known antifungal antibiotic that has been used in the clinic for about five decades. Despite its chemotherapeutic importance, AmB is quite toxic and many efforts have been made to improve its pharmacological properties, e.g., by chemical modifications. The lipid membrane is a molecular target for AmB, however, due to heterogeneity of its components, the molecular mechanism of AmB action is still unclear. The lack of this knowledge hinders rational designing of new and less toxic AmB derivatives. Our review is a critical presentation of the current understanding of AmB molecular mechanism of action at the membrane level. Except the experimental approach, the extensive overview of molecular modeling studies, performed mostly in our lab, is presented. The results of interactions between AmB or some of its derivatives and lipid model membranes are discussed. In our studies, different biomembrane models and different associate states of the antibiotic were included. Presented molecular modeling approach is especially valuable with regard to a new paradigm of the structure of lipid membrane containing liquid-ordered domains. Hopefully, all these complementary experimental/computational approaches are going to reach the point at which a new hypothesis about molecular mechanism of AmB activity and selectivity will be put forward.  相似文献   

13.
Nearest-neighbor recognition experiments have been carried out using varying ratios of exchangeable dimer analogs of 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol and 1,2-distearoyl-sn-glycero-3-phosphatidylglycerol in cholesterol-rich unilamellar vesicles at 60 degrees C. Equilibrium dimer distributions that were obtained support a structural model of the liquid-ordered bilayer in which free cholesterol and the longer-chain phospholipid homodimer are in equilibrium with a complex of unique stoichiometry, where one cholesterol molecule combines with two of the long-chain phospholipid homodimers. In this model, the mixing of the short-chain phospholipids with the uncomplexed long-chain phospholipids is ideal, and the complexed dimers are shielded from the disulfide exchange reaction.  相似文献   

14.
Nanoscale imaging of domains in supported lipid membranes   总被引:7,自引:0,他引:7  
The formation of domains in supported lipid membranes has been studied extensively as a model for the 2D organization of cell membranes. The compartmentalization of biological membranes to give domains such as cholesterol-rich rafts plays an important role in many biological processes. This article summarizes experiments from the author's laboratory in which a combination of atomic force microscopy and near-field scanning optical microscopy is used to probe phase separation in supported monolayers and bilayers as models for membrane rafts. These techniques are used to study binary and ternary lipid mixtures that have gel-phase or liquid-ordered domains that vary in size from tens of nanometers to tens of micrometers, surrounded by a fluid-disordered membrane. Examples are presented in which these models are used to investigate the distribution of glycolipid membrane raft markers and the preference for peptide and protein localization in ordered versus fluid membrane phases. Finally, the enzyme-mediated restructuring of membranes containing liquid-ordered domains provides an in vitro model for the coalescence of membrane rafts to give signaling platforms. Overall, the results demonstrate the importance of using techniques that can probe the nanoscale organization of membranes and of combining techniques that yield complementary information. Furthermore, the ability of supported lipid bilayers to model some aspects of membrane compartmentalization provides an important approach to understanding natural membranes.  相似文献   

15.
Micropipet aspiration of phase-separated lipid bilayer vesicles can elucidate physicochemical aspects of membrane fluid phase coexistence. Recently, we investigated the composition dependence of line tension at the boundary between liquid-ordered and liquid-disordered phases of giant unilamellar vesicles obtained from ternary lipid mixtures using this approach. Here we examine mechanical equilibria and stability of dumbbell-shaped vesicles deformed by line tension. We present a relationship between the pipet aspiration pressure and the aspiration length in vesicles with two coexisting phases. Using a strikingly simple mechanical model for the free energy of the vesicle, we predict a relation that is in almost quantitative agreement with experiment. The model considers the vesicle free energy to be proportional to line tension and assumes that the vesicle volume, domain area fraction, and total area are conserved during aspiration. We also examine a mechanical instability encountered when releasing a vesicle from the pipet. We find that this releasing instability is observed within the framework of our model that predicts a change of the compressibility of a pipet-aspirated membrane cylinder from positive (i.e., stable) to negative (unstable) values, at the experimental instability. The model furthermore includes an aspiration instability that has also previously been experimentally described. Our method of studying micropipet-induced shape transitions in giant vesicles with fluid domains could be useful for investigating vesicle shape transitions modulated by bending stiffness and line tension.  相似文献   

16.
We report a new method for measuring the partitioning kinetics of membrane biomolecules to different lipid phases using a patterned supported lipid bilayer (SLB) platform composed of liquid-ordered (lipid raft) and liquid-disordered (unsaturated lipid-rich) coexistent phases. This new approach removes the challenges in measuring partitioning kinetics using current in vitro methods due to their lack of spatial and temporal control of where phase separation occurs and when target biomolecules meet those phases. The laminar flow configuration inside a microfluidic channel allows us to pattern SLBs with coexistent phases in predetermined locations and thus eliminates the need for additional components to label the phases. Using a hydrodynamic force provided by the bulk flow in the microchannel, target membrane-bound species to be assayed can be transported in the bilayers. The predefined location of stably coexistent phases, in addition to the controllable movement of the target species, allows us to control and monitor when and where the target molecules approach or leave different lipid phases. Using this approach with appropriate experimental designs, we obtain the association and dissociation kinetic parameters for three membrane-bound species, including the glycolipid G(M1), an important cell signaling molecule. We examine two different versions of G(M1) and conclude that structural differences between them impact the kinetics of association of these molecules to raft-like phases. We also discuss the possibilities and limitations for this method. One possible extension is measuring the partitioning kinetics of other glycolipids or lipid-linked proteins with posttranslational modifications to provide insight into how structural factors, membrane compositions, and environmental factors influence dynamic partitioning.  相似文献   

17.
Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.   总被引:5,自引:0,他引:5  
Dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/SM/cholesterol) model membranes exhibit liquid-liquid phase separation and therefore provide a physical model for the putative liquid-ordered domains present in cells. Here we present a combination of atomic force microscopy (AFM) imaging, force measurements, confocal fluorescence imaging and two-focus scanning fluorescence correlation spectroscopy (two-focus SFCS) to obtain structural and dynamical information about this model membrane system. Partition coefficients and diffusion coefficients in the different phases were measured with two-focus SFCS for numerous fluorescent lipid analogues and proteins, while being directly related to the lateral organization of the membrane and its mechanical properties probed by AFM. Moreover we show how the combination of these different approaches is effective in reducing artifacts resulting from the use of a single technique.  相似文献   

18.
The existence of relatively large and long-lived detergent-insoluble, sphingolipid- and cholesterol-enriched, liquid-ordered lipid raft domains in the plasma membranes of eukaryotic cells has become widely accepted. However, we believe that the evidence for their existence is not compelling despite extensive work on both lipid bilayer model and biological membranes. We review here the results of recent studies, which in our view call into question the existence of lipid rafts in membranes, at least in the form commonly depicted.  相似文献   

19.
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号