首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.  相似文献   

2.
A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS capabilities to very long distances. The high-power densities achievable with these laser pulses can also induce self-guided filaments in the atmosphere which produce LIBS excitation of a sample. The first results obtained with remote filament-induced breakdown spectroscopy predict sample analysis at kilometer ranges.  相似文献   

3.
激光诱导击穿光谱(Laser-induced breakdown spectroscopy, LIBS)技术利用激光实现对分析样品的快速原位剥蚀和光谱激发,是一种具有广阔应用前景的分析手段,尤其是在现场、原位分析中优势明显,快速原位的分析特点符合未来分析仪器的发展方向.近年来基于该技术开展各类仪器研发的相关工作,引起广大研究者的极大关注.本文综述了激光诱导击穿光谱仪器中关键部件的组成及发展,从便携式、手持式及远程系统三个方面综述了各类现场应用仪器的研发进展,并对未来发展方向进行了展望.  相似文献   

4.
《Analytical letters》2012,45(12):1957-1965
Abstract

Instrumental techniques that allow the direct analysis of solids with little or no sample preparation are particularly important for the evaluation of samples that are difficult to analyze such as refractory or geological materials. Laser‐induced breakdown spectroscopy (LIBS) is a promising technique for the direct, rapid analysis of elements in solid materials with minimal sample preparation. The main advantages over wet techniques are virtual nondestructiveness and analysis speed. The goal of this work is the direct determination of aluminum of archaeological pieces using laser‐induced breakdown spectroscopy. The corresponding signals of metals were interpolated from calibration graphs of different salts of the metals. The matrix effects from the direct determination of these elements were thoroughly investigated. The potential of this technique for direct quantitative analysis of real archaeological materials (from Department of Ancient Science, University of Zaragoza) was evaluated, and the reproducibility of LIBS spectra from different archaeological samples was measured as a function of the number of laser shots. Finally, the results from LIBS are compared with those obtained by laser ablation inductively coupled plasma mass spectrometry.  相似文献   

5.
为改善激光诱导击穿光谱(Laser-Induced Breakdown Spectroscopy, LIBS)技术激光能量不均匀分布的问题,利用仿真软件对半径为12.5 mm的不同焦距型号的平凸柱面镜进行光路成像模拟,模拟显示满足激光器条件的最佳焦距为100 mm,在此基础上搭建基于LIBS光束的整形系统,实验表明:相比于无平凸柱面镜整形,样品中锶元素的焦斑光强均方差系数平均降低了41.91%,焦斑光强峰谷比系数平均降低了41.27%,而能量均匀度平均提高了17.23%,拟合决定系数由0.860提高到了0.914。结果显示使用平凸柱面镜可提高光束能量的均匀性,验证了平凸柱面镜是激光光束整形的一种有效方法。  相似文献   

6.
In the present work, a model of double pulse laser-induced breakdown spectroscopy (LIBS) spectrometer has been developed and results from two different applications of double pulse LIBS for solving the problems of environmental interest are presented. In one case, laser induced breakdown spectroscopy has been applied to the determination of heavy and toxic metals (lead) in soil samples. In the second case, laser induced breakdown spectroscopy was used in preliminary experiments for the detection of sulfur content in coal, and on the basis of spectral features, ways to improve the sensitivity of laser induced breakdown spectroscopy detection of sulfur are proposed. The detection limit for lead in soil was estimated to be approximately 20 ppm that is lower than the regulatory standards for the presence of lead in soil.  相似文献   

7.
When compared to many other sensitive methods for material detection, such as inductively coupled mass spectroscopy and thermal ionization mass spectroscopy, laser-induced breakdown spectroscopy (LIBS) typically exhibits a lower signal-to-noise ratio (SNR), resulting in higher detection limits. Increasing the SNR of LIBS would improve the ability to characterize the sample composition with increased accuracy and speed and reduce the amount of material needed to perform analysis. We have been investigating the effect of simple ultrashort laser pulse shaping on the SNR of LIBS. Our goal is to control the dynamics of the ionization and recombination processes in the laser-produced plasma to favorably affect the SNR associated with the line emission from the plasma. Pulse shaping is performed using an acousto-optic programmable dispersive filter. An adaptive learning algorithm is being developed to automate the pulse shape optimization process for maximization of LIBS SNR in nuclear security-relevant material characterization scenarios. We report a 27 % increase of the SNR for non-gated LIBS measurements of uranium by utilizing simple pulse shaping limited exclusively to excess quadratic spectral phase of the laser pulse.  相似文献   

8.
Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s− 1. Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.  相似文献   

9.
中药材重金属元素快速检测对污染监控及人们健康具有重要意义。激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy, LIBS)属于一种快速检测方法,研磨压片等预处理方法相对样品消解已有所简化,但破坏了样品的物理性质,且不能满足中药材大宗品种、大批量检测需求。若进一步简化样品预处理,将更加凸显LIBS快速检测的优势。本文建立了激光诱导击穿光谱技术(LIBS)快速微损检测中药材样品重金属元素定标方法。线性相关系数R2为0.7764,建立的微损定标曲线线性可用于切片党参LIBS快速检测,对待测党参切片样品检测平均相对误差为3.74%,与电感耦合等离子体质谱法(ICP-MS)对比,相关系数R2为0.7957,验证了LIBS技术微损检测的可行性。制备的党参参考定标样品可多次重复用于待测样定标和仪器标定等。实验对待测党参样品仅进行切片处理,避免了研磨、压片等预处理,更加充分地体现LIBS快速检测的优势,为LIBS技术应用于中药材重金属元素快检等领域提供了一种新方法。  相似文献   

10.
因高温、辐射等极端环境限制,核领域亟需具备在线快速检测特性的分析仪器。基于小型风冷脉冲激光器与小型光纤光谱仪实现了远程激光诱导击穿光谱技术(LIBS)装置的小型化,对该便携式远程LIBS系统的定量分析性能进行了研究,实现了5 m外样品的元素遥测。在单脉冲激光能量100 mJ,脉冲延时1.0 μs的分析条件下,实现了白水晶、陶瓷及铝合金样品中Mn、Si、Al、Na、Ba、Ca及Cr元素的激发,验证了LIBS技术对材料组分和物料成分的远程探测能力,对铝合金样品的定量分析结果显示,该远程遥测系统对铝合金样品定量测量结果的最大相对平均偏差为12%,具备执行核领域快速分析场景下的半定量检测能力。  相似文献   

11.
The analytical performance of femtosecond laser-induced breakdown spectroscopy (LIBS) for elemental microanalysis of aluminium alloys and for mapping precipitate distribution on the sample surface has been studied in detail. A Ti–sapphire laser system producing pulses of 130 fs at 800 nm was used to generate the laser-induced plasma. Multi-element microanalysis of commercially available aluminium alloys was performed in air at atmospheric pressure. Crater characteristics such as diameter and crater morphology were characterized by optical and scanning-electron microscopy. Scaling of plasma emission and limit of detection as a function of laser pulse energy was also investigated. Current experimental results are presented and are compared with previous nanosecond microLIBS measurements.  相似文献   

12.
Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid–vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.  相似文献   

13.
我国当前主要能源仍是煤炭资源,煤质快速检测有利于其清洁高效利用。激光诱导击穿光谱(Laser-Induced Breakdown Spectroscopy,LIBS)作为一种快速光谱检测技术,具有样品需求量小、制样简便、可多元素同时测量等优点,其在煤质快速检测中的应用潜力已得到广泛认可。本文从激光诱导击穿光谱仪器(实验室台式、在线式和便携式)的研发现状、激光诱导击穿光谱对煤质(金属元素、非金属元素和工业指标)的检测现状、煤质分析性能提升方法,以及激光诱导击穿光谱定量分析模型研究等方面介绍了近几年来LIBS技术在煤质检测中的应用现状及未来展望。  相似文献   

14.
Application of laser induced breakdown spectroscopy (LIBS) in the quantitative analysis of elemental composition of soils with different origins and Antarctic marine sediments has been considered. The analytical method followed includes the usual plasma modeling at local thermal equilibrium (LTE) based on average temperature and electron density values, as well as spectra normalization, introduced in order to reduce the effects related both to the substrate optical and thermal properties and to the influence of laser parameters on quantitative data. The computational algorithm takes into account only atomic species and their first ionization states, which is sufficient at the plasma temperature measured in the experiments. Calibration curves are finally generated for each element of interest measured on certified samples with different provenience and matrix composition. In this paper a model is developed which takes into account the effects responsible for non-linearities in the relationship between line intensity and elemental concentration. The model properly includes line re-absorption and contributions from space regions with different plasma densities. Its application permits us to obtain the correlation coefficients between the LIBS measured and certified concentration of each element analyzed. These coefficients, specific for a given experimental layout and atomic lines data base, are successively applied in analytical LIBS measurements allowing for the direct determination of a single element concentration in any sample, regardless of its unknown matrix composition. The LIBS method presented here was tested on a priori unknown samples, and gave uncertainties in concentration varying from 15 to 40% over a large concentration range covering several orders of magnitude. The measuring error depends on element type, on the concentration value and also on the number of certified samples used for the initial calibration. The present results are already significant for some field application, such as on-board marine sediment analysis where a significant matrix variation with layer depth is common.  相似文献   

15.
An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr4+Nd3+:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy Ep = 0.8 mJ, wavelength λ = 1064 nm, repetition rate frep. = 5 kHz, pulse duration tp = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg.

The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs).  相似文献   


16.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS.  相似文献   

17.
Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy technique for simple, direct and clean analysis, with great application potential in environmental sustainability studies. In a single LIBS spectrum it is possible to obtain qualitative information on the sample composition. However, quantitative analysis requires a reliable model for analytical calibration. Multilayer perceptron (MLP), an artificial neural network, is a multivariate technique that is capable of learning to recognize features from examples. Therefore MLP can be used as a calibration model for analytical determinations. Accordingly, the present study proposes to evaluate the traditional linear fit and MLP models for LIBS calibration, in order to attain a quantitative multielemental method for contaminant determination in soil under sewage sludge application. Two sets of samples, both composed of two kinds of soils were used for calibration and validation, respectively. The analyte concentrations in these samples, used as reference, were determined by a reference analytical method using inductively coupled plasma optical emission spectrometry (ICP OES). The LIBS-MLP was compared to a LIBS-linear fit method. The values determined by LIBS-MLP showed lower prediction errors, correlation above 98% with values determined by ICP OES, higher accuracy and precision, lower limits of detection and great application potential in the analysis of different kinds of soils.  相似文献   

18.
A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.  相似文献   

19.
Laser-induced breakdown spectroscopy (LIBS) denotes a technique where a pulsed laser beam is used to ablate small amounts of the target material. The characteristic optical emission line intensities of the excited species in the laser-generated plasma allow a quantitative chemical analysis of the target material. LIBS is a fast, non-contact method allowing large working distances between the sample under investigation and the detection system. These properties make LIBS applicable to process control in metallurgy. We describe an apparatus designed for rapid in-situ analysis of solid and molten metals at variable distances of up to 1.5 m. A variable lens system allows compensation for varying positions of the liquid steel surface. The LIBS signal is guided by a fiber optic bundle of 12-m length to the spectrometer. Analysis of an element's concentration takes 7 s. Laboratory experiments using an induction furnace showed that the addition of admixtures to liquid steel results in rapid response of the system. Results including the in-situ monitoring of Cr, Cu, Mn and Ni within certain concentration ranges are presented (Cr: 0.11–13.8 wt.%; Cu: 0.044–0.54 wt.%; Mn: 1.38–2.5 wt.%; Ni: 0.049–5.92 wt.%).  相似文献   

20.
Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) of solid samples have both been shown to be feasible with sample-to-instrument distances of many meters. The two techniques are very useful together, as the combination of elemental compositions from LIBS and molecular vibrational information from Raman spectroscopy strongly complement each other. Remote LIBS and Raman spectroscopy spectra were taken together on a number of mineral samples including sulfates, carbonates and silicates at a distance of 8.3 m. The complementary nature of these spectra is highlighted and discussed. A factor of approximately 20 difference in intensity was observed between the brightest Raman line of calcite, at optimal laser power, and the brighter Ca I LIBS emission line measured with 55 mJ/pulse laser power. LIBS and Raman spectroscopy have several obstacles to devising a single instrument capable of both techniques. These include the differing spectral ranges and required detection sensitivity. The current state of technology in these areas is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号