首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isogeometric discontinuous Galerkin method for Euler equations is proposed. It integrates the idea of isogeometric analysis with the discontinuous Galerkin framework by constructing each element through the knots insertion and degree elevation techniques in non‐uniform rational B‐splines. This leads to the solution inherently shares the same function space as the non‐uniform rational B‐splines representation, and results in that the curved boundaries as well as the interfaces between neighboring elements are naturally and exactly resolved. Additionally, the computational cost is reduced in contrast to that of structured grid generation. Numerical tests demonstrate that the presented method can be high order of accuracy and flexible in handling curved geometry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we develop a new discontinuous Galerkin (DG) finite element method for solving time dependent partial differential equations (PDEs) with higher order spatial derivatives. Unlike the traditional local discontinuous Galerkin (LDG) method, the method in this paper can be applied without introducing any auxiliary variables or rewriting the original equation into a larger system. Stability is ensured by a careful choice of interface numerical fluxes. The method can be designed for quite general nonlinear PDEs and we prove stability and give error estimates for a few representative classes of PDEs up to fifth order. Numerical examples show that our scheme attains the optimal -th order of accuracy when using piecewise -th degree polynomials, under the condition that is greater than or equal to the order of the equation.

  相似文献   


3.
We prove the convergence of a discontinuous Galerkin method approximating the 2‐D incompressible Euler equations with discontinuous initial vorticity: ω0 ϵ L2(Ω). Furthermore, when ω0 ϵ L(Ω), the whole sequence is shown to be strongly convergent. This is the first convergence result in numerical approximations of this general class of discontinuous flows. Some important flows such as vortex patches belong to this class. © 2000 John Wiley & Sons, Inc.  相似文献   

4.
Ultraparabolic equations arise from the characterization of the performance index of stochastic optimal control relative to ultradiffusion processes; they evidence multiple temporal variables and may be regarded as parabolic along characteristic directions. We consider theoretical and approximation aspects of a temporally order and step size adaptive extrapolation discontinuous Galerkin method coupled with a spatial Lagrange second-order finite element approximation for a prototype ultraparabolic problem. As an application, we value a so-called Asian option from mathematical finance.  相似文献   

5.
研究求解一种产生于径向渗流问题的推广的对流扩散方程的局部化间断Galerkin方法,对一般非线性情形证明了方法的L^2稳定性;对线性情形证明了,当方法取有限元空间为κ次多项式空间时,数值解逼近的L^∞(0,T;L^2)模的误差阶为κ。  相似文献   

6.
A discontinuous Galerkin scheme was implemented in the DUNE framework to solve the compressible, inviscid Euler equations in a multi-dimensional Cartesian grid. It uses a HLLC Riemann solver for the numerical fluxes in the interfaces, a total variation bounded limiter to handle discontinuities, a positivity preserving limiter for near vacuum conditions, and adaptive mesh refinement (AMR). (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A nonsymmetric discontinuous Galerkin FEM with interior penalties has been applied to one-dimensional singularly perturbed problem with a constant negative shift. Using higher order polynomials on Shishkin-type layer-adapted meshes, a robust convergence has been proved in the corresponding energy norm. Numerical experiments support theoretical findings.  相似文献   

8.
引入Sobolev方程的等价积分方程,构造Sobolev方程的新的时间间断Galerkin有限元格式.该格式不仅保持有限元解在时间剖分点处的间断特性,而且避免了传统时空有限元格式中跳跃项的出现,从而降低了格式理论分析和数值模拟的复杂性.证明了Sobolev方程的时间间断而空间连续的时空有限元解的稳定性、存在唯一性、L2...  相似文献   

9.
We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (Lévy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments.  相似文献   

10.
Finite-element schemes are developed for solving a linear equation of parabolic type with a discontinuous solution in the space variable. Existence and uniqueness of the solution of the corresponding Cauchy problem is proved. Accuracy bounds are obtained for the finite-element scheme and the Crank-Nicholson scheme.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 66, pp. 33–40, 1988.  相似文献   

11.
We introduce and analyze the local discontinuous Galerkin method for the Oseen equations of incompressible fluid flow. For a class of shape-regular meshes with hanging nodes, we derive optimal a priori estimates for the errors in the velocity and the pressure in - and negative-order norms. Numerical experiments are presented which verify these theoretical results and show that the method performs well for a wide range of Reynolds numbers.

  相似文献   


12.
We consider the nonlinear parabolic partial differential equations. We construct a discontinuous Galerkin approximation using a penalty term and obtain an optimal L(L2) error estimate.  相似文献   

13.
Here, we solve the time-dependent acoustic and elastic wave equations using the discontinuous Galerkin method for spatial discretization and the low-storage Runge-Kutta and Crank-Nicolson methods for time integration. The aim of the present paper is to study how to choose the order of polynomial basis functions for each element in the computational mesh to obtain a predetermined relative error. In this work, the formula 2p+1≈κhk, which connects the polynomial basis order p, mesh parameter h, wave number k, and free parameter κ, is studied. The aim is to obtain a simple selection method for the order of the basis functions so that a relatively constant error level of the solution can be achieved. The method is examined using numerical experiments. The results of the experiments indicate that this method is a promising approach for approximating the degree of the basis functions for an arbitrarily sized element. However, in certain model problems we show the failure of the proposed selection scheme. In such a case, the method provides an initial basis for a more general p-adaptive discontinuous Galerkin method.  相似文献   

14.
Fourth‐order derivatives appearing in different linear and nonlinear transient higher order multidimensional equations modeling several physical problems have always posed computational challenges to widely prevailing numerical approaches such as FDM, FEM, and so forth. In this study, we address the issue effectively using the special features of Daubechies wavelets such as orthogonality, compact support, arbitrary regularity, high‐order vanishing moments, and good localization. An efficient compression strategy is proposed to reduce the computational cost significantly. Implicitly stable backward Euler scheme is used for time marching the evolving solution. A priori error estimates have been derived to prove the convergence of the numerical scheme. The proposed approach is successfully tested on few linear and nonlinear multidimensional PDEs.  相似文献   

15.
16.
The local discontinuous Galerkin method for the numerical approximation of the time-harmonic Maxwell equations in a low-frequency regime is introduced and analyzed. Topologically nontrivial domains and heterogeneous media are considered, containing both conducting and insulating materials. The presented method involves discontinuous Galerkin discretizations of the curl-curl and grad-div operators, derived by introducing suitable auxiliary variables and so-called numerical fluxes. An -analysis is carried out and error estimates that are optimal in the meshsize and slightly suboptimal in the approximation degree are obtained.

  相似文献   


17.
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2(H1) and L2(L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition knch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.  相似文献   

18.
We have developed two new methods for solving convection-diffusion systems, with particular focus on the compressible Navier-Stokes equations. Our methods are extensions of a spacetime discontinuous Galerkin method for solving systems of hyperbolic conservation laws [3]. Following the original scheme, we use entropy variables as degrees of freedom and entropy stable numerical fluxes for the nonlinear convection term. We examine two different approaches for incorporating the diffusion term: the interior penalty method and the local discontinuous Galerkin approach. For both extensions, we can show an entropy stability result for convection-diffusion systems. Although our schemes are designed for systems, we focus on scalar convectiondiffusion equations in this contribution. This allows us to highlight our main ideas behind the stability proofs, which are the same for scalar equations and systems, in a simplified setting.  相似文献   

19.
给出了高阶Euler数的一些同余式.  相似文献   

20.
We propose a piecewise-linear, time-stepping discontinuous Galerkin method to solve numerically a time fractional diffusion equation involving Caputo derivative of order μ ∈ (0, 1) with variable coefficients. For the spatial discretization, we apply the standard continuous Galerkin method of total degree ≤ 1 on each spatial mesh elements. Well-posedness of the fully discrete scheme and error analysis will be shown. For a time interval (0, T) and a spatial domain Ω, our analysis suggest that the error in \(L^{2}\left ((0,T),L^{2}({\Omega })\right )\)-norm is \(O(k^{2-\frac {\mu }{2}}+h^{2})\) (that is, short by order \(\frac {\mu }{2}\) from being optimal in time) where k denotes the maximum time step, and h is the maximum diameter of the elements of the (quasi-uniform) spatial mesh. However, our numerical experiments indicate optimal O(k2 + h2) error bound in the stronger \(L^{\infty }\left ((0,T),L^{2}({\Omega })\right )\)-norm. Variable time steps are used to compensate the singularity of the continuous solution near t = 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号