首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single “emergence parameter”. For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field  相似文献   

2.
Based on the studies on the source regions of a group of coronal mass ejections, we have identified two types of large-scale magnetic structures, and suggested that they are intrinsic components of solar magnetism, their destabilization, expansion, and eruption into the interplanetary space are the basic physical processes which lead to the coronal mass ejections. These two types of large-scale structures are giant magnetic loops connecting the two active belts on the opposite hemispheres of the Sun, and the giant filaments (filament channels) and their related magnetic structures. The latter often appear as two parallel rows of sunspots and plage fields, which align side by side in the full disk daily and synoptic magnetograms. The magnetic neutral lines of these large-scale structures are usually longer than 50 heliographic degrees. We name this type of structure "super A configuration". Sometimes, they are shown as very long filaments and related large-scale magnetic fields. As these magnetic structures are of very large scale, they extend to a great altitude into the corona, they are not easily recognized in magnetic field observations which are usually aimed at solar flare studies. To identify these large-scale structures becomes a key to understanding and predicting coronal mass ejections.  相似文献   

3.
Based on the studies on the source regions of a group of coronal mass ejections, we have identified two types of large-scale magnetic structures, and suggested that they are intrinsic components of solar magnetism, their destabilization, expansion, and eruption into the interplanetary space are the basic physical processes which lead to the coronal mass ejections. These two types of large-scale structures are giant magnetic loops connecting the two active belts on the opposite hemispheres of the Sun, and the giant filaments (filament channels) and their related magnetic structures. The latter often appear as two parallel rows of sunspots and plage fields, which align side by side in the full disk daily and synoptic magnetograms. The magnetic neutral lines of these large-scale structures are usually longer than 50 heliographic degrees. We name this type of structure “super A configuration”. Sometimes, they are shown as very long filaments and related large-scale magnetic fields. As these magnetic structures are of very large scale, they extend to a great altitude into the corona, they are not easily recognized in magnetic field observations which are usually aimed at solar flare studies. To identify these large-scale structures becomes a key to understanding and predicting coronal mass ejections.  相似文献   

4.
A standard starting point for the simulation of collisionless reconnection is the Harris equilibrium which is made up of a current sheet that separates two regions of opposing magnetic field. Magnetohydrodynamic simulations of collisionless reconnection usually include a homogeneous background density for reasons of numerical stability. While, in some cases, this is a realistic assumption, the background density may introduce new effects both due to the more involved structure of the distribution function or due to the fact that the Alfvèn speed remains finite far away from the current sheet. We present a fully kinetic Vlasov simulation of the perturbed Harris equilibrium using a Vlasov code. Parameters are chosen to match the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge but excluding the background density. This allows to compare with earlier simulations [Schmitz H, Grauer R. Kinetic Vlasov simulations of collisionless magnetic reconnection. Phys Plasmas 2006;13:092309] which include the background density. It is found that the absence of a background density causes the reconnection rate to be higher. On the other hand, the time until the onset of reconnection is hardly affected. Again the off diagonal elements of the pressure tensor are found to be important on the X-line but with modified importance for the individual terms.  相似文献   

5.
By means of ‘deep integration’ observations of a videomagnetograph the vector magnetic field was first systematically measured near the solar south polar region on April 12, 1997 when the Sun was in the minimal phase between the 22nd and 23rd solar cycle. It was found that the polar magnetic field deviated from the normal of solar surface by about 42.2° ± 3.2°, a stronger magnetic element may have smaller inclination, and that within the polar cap above heliolatitude of 50°, the unsigned and net flux densities were 7.8 × 10−4) T and −3.4×10−4T, respectively, and consequently, the unsigned and net fluxes were about 5.5 × 1022 and − 2.5 × 1022 Mx. The net magnetic flux, which belongs to the large-scale global magnetic field of the Sun, roughly appmaches the order of the interplanetary magnetic field (IMF) measured at distance of 1 AU. Project supported by the National Natural Science Foundation of China (Grant No. 19791090).  相似文献   

6.
The structure of plasma in the interplanetary space is briefly presented, and the problems related to the variability of solar activity are discussed. The features of magnetic turbulence in the solar wind are also described. Magnetic field fluctuations are one of the causes of enhanced transport both in laboratory and astrophysical plasmas. To a first approximation, the plasma particles follow the magnetic field lines, whose equations form a non-linear one and a half degrees of freedom system. Unless the fluctuation level is very low, numerical simulations are needed to study such a system. We review three-dimensional numerical simulations of field line transport in anisotropic magnetic turbulence. Several transport regimes are found: for low Kubo number, anomalous transport is obtained, featuring both subdiffusion, corresponding to trapping in cantori structures, and superdiffusion, corresponding to Levy flights in the stochastic layer. Increasing the Kubo number, and hence stochasticity, quasilinear, intermediate, and percolative regimes are found, in the order. An expression of the diffusion coefficient valid for generalized anisotropy is presented.  相似文献   

7.
We consider a mathematical model of equilibrium configurations of plasma, magnetic field, and electric field in a toroidal trap with two ring conductors with current loaded into plasma. We present the mathematical apparatus of the model based on the numerical solution of boundary value problems for the Grad–Shafranov equation (a differential equation of elliptic type for the magnetic flux function), solution methods for these problems, and numerically obtained properties of equilibrium configurations. We indicate the differences in configurations in the toroidal trap and in its analog straightened into a cylinder.  相似文献   

8.
在非均匀道路条件下,推广了各向异性守恒高阶交通流模型(CHO模型),获得流通量间断CHO模型,并基于其Riemann不变量性质,运用局部简化方法及δ映射算法,设计了求解流通量间断CHO模型的一阶Godunov、EO(Engquist-Osher)和LF(Lax-Friedrichs)等数值格式.通过数值模拟表明流通量间断CHO模型是合理有效的,它可以描述平衡态和非平衡态交通流,相对于流通量间断LWR(Lighthill-Whitham-Richards)模型,其能更好地刻画实际交通现象.  相似文献   

9.
An analytical method is presented to investigate thermo-magneto-elastic stresses and perturbation of the magnetic field vector in a conducting non-homogeneous hollow cylinder under thermal shock. The interaction between the deformation and the magnetic field vector in a non-homogeneous hollow cylinder is considered by adding a Lorentz’s electro-magneto-force into the equation of thermo-elastic motion of the non-homogeneous hollow cylinder in an axial magnetic field. The exact solution for magneto-thermo-dynamic stresses and perturbation responses of an axial magnetic field vector in a conducting non-homogeneous hollow cylinder was obtained by using finite integral transforms. From numerical calculations, the dynamic characteristics on both thermo-magneto-stresses and perturbation of the axial magnetic field vector in the conducting non-homogeneous hollow cylinder is revealed and discussed.  相似文献   

10.
Robert Artebrant 《PAMM》2007,7(1):2020077-2020078
Violation of the divergence constraint on the magnetic flux density in magnetohydrodynamical (MHD) simulations leads to stability problems. It is therefore of great importance to numerically respect this intrinsic constraint. Since the divergence preservation is a local phenomenon inherent in the MHD-system it is appealing to mimic this property numerically by a locally divergence-preserving scheme. A common numerical technique for simulation of the MHD-system of conservation laws is the finite volume (FV) method. In [SISC 26 2005 pp. 1166] a local procedure to redistribute the numerical fluxes in a FV-scheme so that a discrete divergence operator vanishes was presented. This procedure stabilizes the base scheme and respects the accuracy to the second order level. The present note describes a development of the above procedure that complies with the finite volume framework, preserves a fourth order discrete divergence operator locally and retains the accuracy of a generic semi-discrete finite volume scheme up to fourth order. The redistribution of the numerical magnetic field fluxes is formulated in a standard conservative setting, making it trivial to implement the divergence-preserving modification in an existing FV-scheme; see [JCP 227 2008 pp.3405] for the details. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The equations of radiative magnetohydrodynamics describe the dynamics of an electrically conducting fluid interacting with magnetic fields and radiation. In particular they provide a widely accepted mathematical model for the physics in the solar photosphere and convection zone. In the spatially three‐dimensional case we present several notions of solutions for the Cauchy problem and discuss existence and uniqueness issues. Furthermore we report on numerical experiments in the context of solar physics.  相似文献   

12.
运用频域法研究了一类具有时滞的单模激光系统,选择时滞τ作为参数,当τ通过某个临界值时,Hopf分支产生,即从平衡点处分支出一簇周期解,最后,利用数值模拟证实理论分析结果的正确性.  相似文献   

13.
This paper looks at the influence of the induced magnetic field on peristaltic transport through a uniform infinite annulus filled with an incompressible viscous and Newtonian fluid. The present theoretical model may be considered as mathematical representation to the movement of conductive physiological fluids in the presence of the endoscope tube (or catheter tube). The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. The flow analysis has been developed for low Reynolds number and long wave length approximation. Exact solutions have been established for the axial velocity, stream function, axial induced magnetic field, current distribution and the magnetic force function. The effects of pertinent parameters on the pressure rise and frictional forces on the inner and outer tubes are investigated by means of numerical integrations, also we study the effect of these parameters on the pressure gradient, axial induced magnetic field and current distribution. The phenomena of trapping is further discussed.  相似文献   

14.
One builds the solution of GL equation in terms of the elliptic cn function of complex argument. The real part of the complex action, , corresponds to the potential of a vortex lattice, and from here, through the elliptic function degeneration, to the vortex streets. Considering the vortex streets fixed on vacuum by a background magnetic field through pinning, from equating the current density to zero one determines the field structure: the mean value will be roughly equal to BC2, and its flux will be fractional. The fractional flux will be associated to quasi-particles obeying the ‘anyonic’ statistics. At low temperatures and high external magnetic field, the structure of background field will be of Cantorian type.  相似文献   

15.
Models of two-dimensional periodic quantum-mechanical systems in a uniform magnetic field are considered. Results of the numerical analysis of the energy spectrum for these models are presented. The flux–energy diagrams for the magnetic Bloch bands are obtained. Evidence for a fractal structure of these diagrams is given.  相似文献   

16.
研究一类简化的时滞半导体激光方程的稳定性和Hopf分岔.以时滞量为参数,分析系统线性化方程零解的稳定性,给出系统产生Hopf分岔临界时滞表达式,最后用数值模拟对结论进行验证.  相似文献   

17.
In this paper we present the numerical investigation of a three-dimensional four field model for magnetic reconnection in collisionless regimes. The model describes the evolution of the magnetic flux and vorticity together with the perturbations of the parallel magnetic and velocity fields. We explored the different behavior of vorticity and current density structures in low and high β regimes, β being the ratio between the plasma and magnetic pressure. A detailed analysis of the velocity field advecting the relevant physical quantities is presented. We show that, as the reconnection process evolves, velocity layers develop and become more and more localized. The shear of these layers increases with time ending up with the occurrence of secondary instabilities of the Kelvin-Helmholtz type. We also show how the β parameter influences the different evolution of the current density structures, that preserve for longer time a laminar behavior at smaller β values. A qualitative explanation of the structures formation on the different z-sections is also presented.  相似文献   

18.
根据扁壳几何非线性理论,推导了均布压力与均匀温度场联合作用下的扁球壳的位移型几何非线性控制方程.考虑夹紧边界条件,采用打靶法得到了扁球壳轴对称弯曲与屈曲的数值结果.讨论了壳体几何参数对平衡路径、临界荷载的影响.给出了壳体临界几何参数.当几何参数大于临界几何参数时,上、下临界荷载都随几何参数增加而增加.给定几何参数时,考察了不同均匀温度场对壳体上、下临界荷载、临界几何参数以及平衡构型的影响.均匀升温会使上临界荷载显著增加,会使下临界荷载略有减小.均匀变温会使临界几何参数改变.  相似文献   

19.
We study magnetohydrodynamic flow of a liquid metal in a straight duct. The magnetic field is produced by an exterior magnetic dipole. This basic configuration is of fundamental interest for Lorentz force velocimetry (LFV), where the Lorentz force opposing the relative motion of conducting medium and magnetic field is measured to determine the flow velocity. The Lorentz force acts in equal strength but opposite direction on the flow as well as on the dipole. We are interested in the dependence of the velocity on the flow rate and on strength of the magnetic field as well as on geometric parameters such as distance and position of the dipole relative to the duct. To this end, we perform numerical simulations with an accurate finite-difference method in the limit of small magnetic Reynolds number, whereby the induced magnetic field is assumed to be small compared with the external applied field. The hydrodynamic Reynolds number is also assumed to be small so that the flow remains laminar. The simulations allow us to quantify the magnetic obstacle effect as a potential complication for local flow measurement with LFV. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
An exact mode solution that investigates the prebuckling and postbuckling characteristics of nonlocal nanobeams with fixed–fixed, hinged–hinged, and fixed–hinged boundary conditions in a longitudinal magnetic field is determined. The geometric nonlinearity arising from mid-plane stretching is considered to obtain the nonlinear governing equation of motion by virtue of Hamilton's principle. The influences of the nonlocal and magnetic parameters on the prebuckling and postbuckling dynamics of nanobeams with various boundary conditions are evaluated, indicating that the critical buckling force can be decreased with the increase of the nonlocal parameter while can be increased with increasing the magnetic parameter. It is demonstrated that the first natural frequency of the nanobeam with fixed–fixed and fixed–hinged conditions in postbuckling configuration is increased from zero to a constant value for higher values of the nonlocal parameter with increasing the axial force. The second natural frequency of the buckled nanobeam is always decreased with an increase of the nonlocal parameter. The results show that the internal resonance between the first and second modes of the postbuckling nanobeams can be quickly and easily activated by increasing the nonlocal parameters, especially for fixed–fixed and hinged–hinged boundary conditions. In addition, the results obtained by exact mode solution are compared those obtained by classical mode solution. It is found that the classical mode is valid only for nonlocal nanobeams with the hinged–hinged boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号