首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The Problem of Time occurs because the ‘time’ of GR and of ordinary Quantum Theory are mutually incompatible notions. This is problematic in trying to replace these two branches of physics with a single framework in situations in which the conditions of both apply, e.g. in black holes or in the very early universe. Emphasis in this Review is on the Problem of Time being multi‐faceted and on the nature of each of the eight principal facets. Namely, the Frozen Formalism Problem, Configurational Relationalism Problem (formerly Sandwich Problem), Foliation Dependence Problem, Constraint Closure Problem (formerly Functional Evolution Problem), Multiple Choice Problem, Global Problem of Time, Problem of Beables (alias Problem of Observables) and Spacetime Reconstruction/Replacement Problem. Strategizing in this Review is not just centred about the Frozen Formalism Problem facet, but rather about each of the eight facets. Particular emphasis is placed upon A) relationalism as an underpinning of the facets and as a selector of particular strategies (especially a modification of Barbour relationalism, though also with some consideration of Rovelli relationalism). B) Classifying approaches by the full ordering in which they embrace constrain, quantize, find time/history and find observables, rather than only by partial orderings such as “Dirac‐quantize”. C) Foliation (in)dependence and Spacetime Reconstruction for a wide range of physical theories, strategizing centred about the Problem of Beables, the Patching Approach to the Global Problem of Time, and the role of the question‐types considered in physics. D) The Halliwell‐ and Gambini–Porto–Pullin‐type combined Strategies in the context of semiclassical quantum cosmology.  相似文献   

9.
10.
There is a precise sense in which the requirement of background independence suffices to uniquely select the kinematics of loop quantum gravity (LQG). Specifically, the fundamental kinematic algebra of LQG admits a unique diffeomorphism invariant state. Although this result has been established rigorously, it comes as a surprise to researchers working with other approaches to quantum gravity. The goal of this article is to explain the underlying reasons in a pedagogical fashion using geometrodynamics, keeping the technicalities at their minimum. This discussion will bring out the surprisingly powerful role played by diffeomorphism invariance (and covariance) in non-perturbative, canonical quantum gravity.  相似文献   

11.
《Physics Reports》1997,286(5):271-348
In this paper we will make a survey of solutions to the Wheeler-De Witt equation which have been found up to now in Ashtekar's formulation for canonical quantum gravity. Roughly speaking they are classified into two categories, namely, Wilson-loop solutions and topological solutions. While the program of finding solutions which are composed of Wilson loops is still in its infancy, it is expected to be developed in the near future. Topological solutions are the only solutions at present which can be interpreted in terms of spacetime geometry. While the analysis made here is formal in the sense that we do not deal with rigorously regularized constraint equations, these topological solutions are expected to exist even in the fully regularized theory and they are considered to yield vacuum states of quantum gravity. We also make an attempt to review the spin network states as intuitively as possible. In particular, the explicit formulae for two kinds of measures on the space of spin network states are given.  相似文献   

12.
13.
14.
We analyze the perturbed minisuperspace models of quantum gravity through the analogy with the time-independent Schrödinger equation. We show that a time variable defined in a previous work, the probabilistic time, is the variable which yields the backreaction Einstein equations.  相似文献   

15.
We present a new point of view on the quantization of the massive gravitational field, namely we use exclusively the quantum framework of the second quantization. The Hilbert space of the many-gravitons system is a Fock space F+ (Hgraviton) where the one-particle Hilbert space Hgraviton carries the direct sum of two unitary irreducible representations of the Poincaré group corresponding to two particles of mass m > 0 and spins 2 and 0, respectively. This Hilbert space is canonically isomorphic to a space of the type Ker(Q)/Im(Q) where Q is a gauge charge defined in an extension of the Hilbert space Hgraviton generated by the gravitational field h and some ghosts fields u, (which are vector Fermi fields) and v (which is a vector Bose field).Then we study the self interaction of massive gravity in the causal framework. We obtain a solution which goes smoothly to the zero-mass solution of linear quantum gravity up to a term depending on the bosonic ghost field. This solution depends on two real constants as it should be; these constants are related to the gravitational constant and the cosmological constant. In the second order of the perturbation theory we do not need a Higgs field, in sharp contrast to Yang-Mills theory.  相似文献   

16.
17.
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.  相似文献   

18.
We perform the dual transformation of theYang-Mills theory in three dimensions using the Wilson action on the cubic lattice. The dual lattice is made of tetrahedra triangulating a 3-dimensional curved manifold but which is embedded into a flat 6-dimensional space [for the SU(2) gauge group]. In the continuum limit, the theory can be reformulated in terms of 6-component gauge-invariant scalar fields having the meaning of the external coordinates of the dual lattice sites. These 6-component fields induce a metric and a curvature of the 3-dimensional dual-color space. The Yang-Mills theory can also be rewritten as a quantum gravity theory with the Einstein-Hilbert action but with a purely imaginary Newton constant plus a homogeneous “ether” term. The theory can be formulated in a gauge-invariant and local form without explicit color degrees of freedom.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号