首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) plays multiple roles in the nervous system. It is produced as a result of damage or injury of the retina as a part of the central nervous system. Detailed knowledge of the extent and the time course of NO production is of great importance for the understanding of pathological processes and their appropriate medical treatment.Sections of rat retina were stained with antibodies against the three isoforms of NO synthase (NOS) at several time points after a lesion of the optic nerve. No significant changes of NOS expression could be seen at any of the checked time points.For the electrochemical detection of NO production, we modified small platinum electrodes with a NO-sensitive nickel porphyrin by electrochemical polymerisation. Compared to other substances, electrochemically polymerised eugenol was found to be most suitable for protection against interferences. For the measurements, differential pulse amperometry was used. The response to nitric oxide was linear.NO production of adult rat retinas was measured post axotomy after different time points with electrochemical electrodes ex vivo. With non-treated retinas, an NO concentration of approximately 15 M was measured. NO concentration is elevated after an axotomy reaching its highest value of up to 30 M 5 days after the lesion. The NO concentration is decreased below the initial value after 9–14 days post axotomy.  相似文献   

2.
A direct-current glow discharge is used to excite flowing mixtures of NO/He and NO/N2. A strongly vibration-vibration pumped vibrational population distribution over the states NO(X 2Π, υ = 1) to NO(X2Π, υ = 15) is measured by infrared emission spectroscopy. Measured population distributions are consistent with results calculated from earlier measurements of V-V and V-T,R rates.  相似文献   

3.
The spin-trapping technique was used to study the radical intermediates produced by reaction of nitric oxide (*NO) and peroxynitrite with serum albumin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Our results show that the major radical product induced by *NO and by peroxynitrite with serum albumin and GAPDH was a thiyl radical. The same radical can be detected in the *NO-transfer from S-nitroso albumin to low molecular weight thiols. Moreover, *NO or peroxynitrite treatment of GAPDH was able to induce NAD-dependent covalent modification of the enzyme in erythrocyte ghosts.  相似文献   

4.
Two-photon excitation has been successfully applied to the direct measurement of electronic quenching rates. The value obtained for the quenching rate of NO[A] by NO[X] (Q = 1.5±0.15 torr-1) is in agreement with previous determinations.  相似文献   

5.
Nitric oxide synthases (NOS) are hemoproteins that catalyze the reaction of L-arginine to L-citrulline and nitric oxide. N-(3-(Aminomethyl)benzyl)acetamidine (1400W) was reported to be a slow, tight-binding, and highly selective inhibitor of iNOS in vitro and in vivo. Previous mechanistic studies reported that 1400W was recovered quantitatively after iNOS fully lost its activity and modification to iNOS was not detected. Here, it is shown that 1400W is a time-, concentration-, and NADPH-dependent irreversible inactivator of iNOS. HPLC-electrospray mass spectrometric analysis of the incubation mixture of iNOS with 1400W shows both loss of heme cofactor and formation of biliverdin, as was previously observed for iNOS inactivation by another amidine-containing compound, N5-(1-iminoethyl)-L-ornithine (L-NIO). The amount of biliverdin produced corresponds to the amount of heme lost by 1400W inactivation of iNOS. A convenient MS/MS-HPLC methodology was developed to identify the trace amount of biliverdin produced by inactivation of iNOS with either 1400W or L-NIO to be biliverdin IXalpha out of the four possible regioisomers. Two mechanisms were previously proposed for iNOS inactivation by L-NIO: (1) uncoupling of the heme peroxide intermediate, leading to destruction of the heme to biliverdin; (2) abstraction of a hydrogen atom from the amidine methyl group followed by attachment to the heme cofactor, which causes the enzyme to catalyze the heme oxygenase reaction. The second mechanistic proposal was ruled out by inactivation of iNOS with d3-1400W, which produced no d2-1400W. Detection of carbon monoxide as one of the heme-degradation products further excludes the covalent heme adduct mechanism. On the basis of these results, a third mechanism is proposed in which the amidine inactivators of iNOS bind as does substrate L-arginine, but because of the amidine methyl group, the heme peroxy intermediate cannot be protonated, thereby preventing its conversion to the heme oxo intermediate. This leads to a change in the enzyme mechanism to one that resembles that of heme oxygenase, an enzyme known to convert heme to biliverdin IXalpha. This appears to be the first example of a compound that causes irreversible inactivation of an enzyme without itself becoming modified in any way.  相似文献   

6.
Two heterotrophic denitrifying bacteria,Paracoccus denitrificans andPseudomonas denitrificans, have been shown to utilize nitric oxide (NO) as a terminal electron acceptor and succinate, yeast extract, and heat/alkali pretreated municipal sewage sludge as carbon and energy sources. Complete removal of NO (0.50%) from a feed gas sparged into the cultures was observed. It is suggested that reduction of NO may be a common feature of denitrifying bacteria and that a microbial process to dispose of NOx may be economically viable.  相似文献   

7.
A variety of aldoximes and ketoximes were oxidized to corresponding aldehydes and ketones by nitric oxide in the presence of oxygen.A presumed mechanism was suggested.  相似文献   

8.
Xian Y  Zhang W  Xue J  Ying X  Jin L  Jin J 《The Analyst》2000,125(8):1435-1439
Nitric oxide (NO) plays an important role in various physiological processes, acting either as an intra- and intercellular messenger or as a toxic agent. The detection and quantification of NO have been accomplished by a variety of methodologies. In the present study, real-time production of NO in the rat heart was continuously measured by using a novel copper-platinum microparticle-modified NO electrochemical microsensor. The linearity range of the microsensor is between 8.0 x 10(-8) and 4.8 x 10(-6) mol L-1 and the detection limit is 3.0 x 10(-8) mol L-1. NO release from the rat heart stimulated by the agonists L-arginine and acetylcholine was observed, and the responses were decreased by the NO synthase inhibitor L-N omega-nitroarginine. In addition, the effect of sodium nitroprusside (SNP), a NO donor, was also studied. SNP increases the concentration of NO in the rat heart. The experiments showed that electrochemical detection is suitable for detecting and quantifying NO in biological systems.  相似文献   

9.
In order to develop a high-throughput assay for nitric oxide metabolites, nitrite (NO2-) and nitrate (NO3-), in biological fluids, we have investigated the simultaneous determination of them using an electrophoretic lab-on-a-chip (microchip capillary electrophoresis, MCE) technique. In this study, in order to establish an MCE assay process without deproteinization, the addition of a zwitterionic additive into the running buffer to reduce the adsorption of protein onto the surface of channel was investigated. Initially, some zwitterionic additives were investigated by making a comparison of relative standard deviations (RSDs) of the migration times for NO2(-) and NO3(-) on capillary electrophoresis. From the results of our comparison of the RSD values, 2% (w/w) N-cyclohexyl-2-aminoethanesulfonic acid (CHES) was selected. As a result of the application of the running buffer with CHES to the MCE process, the complete separation of NO2(-) and NO3(-) in human plasma without deproteinization was achieved within 1 min. Since the RSD values of the positions of the peaks were less than 2.3%, beneficial reduction effects on MCE were suggested. When we used an internal standard method in order to correct the injection volume, the RSDs of the peak heights and areas were less than 10%, and the correlation coefficients of spiked calibration curves ranging from 0 to 350 microM were 0.999 and 0.997 for NO2(-) and NO3(-), respectively. The limits of detection (S/N=3) were 53 microM for NO2(-) and 41 microM for NO3(-). Moreover, the correlation coefficients in excess of 0.99 between the MCE method and a conventional Griess method were achieved for both NO2(-) and NO3(-). Consequently, the possibility of establishing a high-throughput assay process was obtained by utilizing 2% (w/w) CHES to reduce protein adsorption.  相似文献   

10.
Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS(-/-) mice, with syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor N(G)-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca(2+) levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca(2+) levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in syringaresinol- treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca(2+) chelator, calmodulin antagonist, and CaMKKβ siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca(2+)-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca(2+)/CaMKKβ-dependent eNOS phosphorylation and Ca(2+)-dependent eNOS dimerization.  相似文献   

11.
12.
Metalloporphyrin catalyzed biomimetic oxidation was used for the identification of nitric oxide (NO) donors with diverse chemical structure. Methodology was validated by testing known NO donors. Efficient automation of the test allowed us to investigate a subset of our corporate library. Several hits identified in this campaign were validated in both the chemical and also microsomal model that revealed all hits to be active in the biological system, as well. One of the hits showed comparable activity to V-PYRRO/NO, the prototypic liver selective NO donor.  相似文献   

13.
基于氮氧化物溶于水生成HNO2和HNO3的反应,采用NaOH溶液收集氮氧化物,用高效液相色谱法测定氮氧化物,并用分光光度法作对比。结果表明,分光光度法所测结果偏低,高效液相色谱法更准确而且简便、快速,选择性好。  相似文献   

14.
Attempts to develop new technologies of NO x (NO + NO2) emission reduction are still carried out all around the world. One of the relatively new approaches is the application of ozone injection into the exhaust gas stream followed by the absorption process. Ozone is used to transform NO x to higher nitrogen oxides which yield nitric acid with better effectiveness. The main objective of this paper was to study the influence of mole ratio (MR) O3/NO used in the ozonation process of NO x on the effectiveness of NO x oxidation to higher oxides. The ozonation process was carried out in a flow reactor for concentrations of nitric oxide in the range of 1.5 × 10−5−7.7 × 10−5 mol dm−3 and varying O3/NO mole ratios. Measurements were conducted with the use of a FTIR spectrometer. The results obtained prove that for MR higher than 1, the oxidation effectiveness of nitric oxides generally reaches 95 %, whereas for MR higher than 2, oxidation of NO x to higher nitrogen oxides is completed.  相似文献   

15.
Nitrogen oxides are nowadays a subject of global concern. Several types of nitrogen oxides exist in the environment: N2O, NO, NO2, N2O3, N2O4, N2O5. The abbreviation NO x usually relates to nitric oxide NO, nitrogen dioxide NO2, and nitrous oxide N2O. The first two are harmful pollutants for both environment and human health, whereas the third is one of the greenhouse gases. Implementation of stringent NO x emission regulations requires the development of new NO x removal technologies from exhaust gases. One of many proposals for NO x emission reduction is the application of an oxidizing agent which would transform NO x to higher nitrogen oxides with higher solubility in water. The main objective of the paper was to present the rate constant of nitric oxide oxidation, determined in our studies.  相似文献   

16.
Lim MH  Lippard SJ 《Inorganic chemistry》2004,43(20):6366-6370
The ruthenium(II) porphyrin fluorophore complexes [Ru(TPP)(CO)(Ds-R)] (TPP = tetraphenylporphinato dianion; Ds = dansyl; R = imidazole (im), 1, or thiomorpholine (tm), 2) were synthesized and investigated for their ability to detect nitric oxide (NO) based on fluorescence. The X-ray crystal structures of 1 and 2 were determined. The Ds-im or Ds-tm ligand coordinates to an axial site of the ruthenium(II) center through a nitrogen or sulfur atom, respectively. Both exhibit quenched fluorescence when excited at 368 or 345 nm. Displacement of the metal-coordinated fluorophore by NO restores fluorescence within minutes. These observations demonstrate fluorescence-based NO detection using ruthenium porphyrin fluorophore conjugates.  相似文献   

17.
A Ti-W-V catalyst has been proposed for removing NO by means of ammonia reduction from flue gases from power stations and boiler systems operating with natural gas; it contains 10% W03 and 5% V2O5 deposited on anatase. The optimum NH3/NO ration is 0.8. oxygen at levels of 0.1–7.8 vol. % does not affect the reduction of the NO. Industrial tests in flue gas from a power station show that the reduction of the NO is 96% at 240–270°C. The basic technological parameters have been determined.State Research and Development Institute for the Nitrogen Industry and Organic Synthesis Products, Moscow. Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 27, No. 5, pp. 595–598, September–October, 1991. Original article submitted July 5, 1991.  相似文献   

18.
Various mechanisms have been proposed for the regulatory action of nitric oxide. The most common mechanism involves stimulation of soluble guanylate cyclase (sGC) with consequent elevation of cyclic GMP levels. A more detailed chemical mode of action is given in this paper entailing electron transfer (ET) processes which ensue after binding of NO to iron-containing enzymes, and which may be responsible for some of the observed physiological effects. The focus is on immunological reactions and neurotransmission. Electrochemical data for model FeNO complexes are discussed which support the hypothesis. Comparisons are made with the mode of action by anti-infective drugs. The ET transformations suggested for NO in the nervous system are in marked contrast with the current concentration on ionic reactions. Based on the ET framework, analogies exist with a proposed mechanism for the plant hormone ethylene. Other supportive evidence from various categories is also presented. The general approach in this paper represents an elaboration of the one-electron redox processes put forth recently for NO action by Saran and Bors (Chem.-Biol. Interact., 90 (1994) 35).  相似文献   

19.
20.

A mean field model for NO oxidation with H2 over supported catalysts is proposed and solved numerically. The model is composed of a system of PDEs subject to nonclassical conjugate conditions at the catalyst–support interface and includes the bulk diffusion of reactants and reaction products and surface diffusion of all intermediate products. The influence of the particle jumping rate constants via the catalyst–support interface and reaction rate constants on the evolution of the reactivity of the catalyst surface is investigated. It is shown that the conversion rates (turnover frequencies) of NO and H2 into products, N2, H2O, NH3, and N2O, are nonmonotonous functions of time. The conversion rates of NO and H2 into N2 and N2O can have one or two local maxima, while their conversion rates into H2O and NH3 can possess one, two, or three local maxima. The mechanism and conditions for arising of the second maximum are discussed and reaction steps that essentially increase the surface reactivity are indicated.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号