首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
A vertex v is a boundary vertex of a connected graph G if there exists a vertex u such that no neighbor of v is further away from u than v. Moreover, if no vertex in the whole graph V(G) is further away from u than v, then v is called an eccentric vertex of G. A vertex v belongs to the contour of G if no neighbor of v has an eccentricity greater than the eccentricity of v. Furthermore, if no vertex in the whole graph V(G) has an eccentricity greater than the eccentricity of v, then v is called a peripheral vertex of G. This paper is devoted to study these kinds of vertices for the family of chordal graphs. Our main contributions are, firstly, obtaining a realization theorem involving the cardinalities of the periphery, the contour, the eccentric subgraph and the boundary, and secondly, proving both that the contour of every chordal graph is geodetic and that this statement is not true for every perfect graph.  相似文献   

2.
Let G be a connected (di)graph. A vertex w is said to strongly resolve a pair u,v of vertices of G if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a strong resolving set for G is called the strong dimension of G. It is shown that the problem of finding the strong dimension of a connected graph can be transformed to the problem of finding the vertex covering number of a graph. Moreover, it is shown that computing this invariant is NP-hard. Related invariants for directed graphs are defined and studied.  相似文献   

3.
Let G be a finite connected graph with no cut vertex. A distance tree T is a spanning tree of G which further satisfies the condition that for some vertex v, dG(v, u) = dT(v, u) for all u, where dG(v, u) denotes the distance of u from v in the graph G. The conjecture that if all distance trees of G are isomorphic to each other then G is a regular graph, is settled affirmatively. The conjecture was made by Chartrand and Schuster.  相似文献   

4.
Given a graph G, the m-step graph of G, denoted by S m (G), has the same vertex set as G and an edge between two distinct vertices u and v if there is a walk of length m from u to v. The line graph of G, denoted by L(G), is a graph such that the vertex set of L(G) is the edge set of G and two vertices u and v of L(G) are adjacent if the edges corresponding to u and v share a common end vertex in G. We characterize connected graphs G such that S m (G) and L(G) are isomorphic.  相似文献   

5.
A graph G is 2-stratified if its vertex set is partitioned into two nonempty classes (each of which is a stratum or a color class). We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that for every blue vertex v of G, there is a copy of F in G rooted at v. In this paper, we survey recent results on the F-domination number for various 2-stratified graphs F.  相似文献   

6.
《Discrete Mathematics》2002,231(1-3):211-225
The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity among the vertices of G. The contraction of edge e=uv in G consists of removing e and identifying u and v as a single new vertex w, where w is adjacent to any vertex that at least one of u or v were adjacent to. The graph resulting from contracting edge e is denoted G/e. An edge e is diameter-essential if diam(G/e)<diam(G). Let c(G) denote the number of diameter-essential edges in graph G. In this paper, we study existence and extremal problems for c(G); determine bounds on c(G) in terms of diameter and order; and obtain characterizations of graphs achieving extreme values of c(G).  相似文献   

7.
Let G be a finite simple connected graph. A vertex v is a boundary vertex of G if there exists a vertex u such that no neighbor of v is further away from u than v. We obtain a number of properties involving different types of boundary vertices: peripheral, contour and eccentric vertices. Before showing that one of the main results in [G. Chartrand, D. Erwin, G.L. Johns, P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25-34] does not hold for one of the cases, we establish a realization theorem that not only corrects the mentioned wrong statement but also improves it.Given SV(G), its geodetic closure I[S] is the set of all vertices lying on some shortest path joining two vertices of S. We prove that the boundary vertex set ∂(G) of any graph G is geodetic, that is, I[∂(G)]=V(G). A vertex v belongs to the contour Ct(G) of G if no neighbor of v has an eccentricity greater than v. We present some sufficient conditions to guarantee the geodeticity of either the contour Ct(G) or its geodetic closure I[Ct(G)].  相似文献   

8.
In this paper we introduce the graph layout parameter neighbourhood-width as a variation of the well-known cut-width. The cut-width of a graph G=(V,E) is the smallest integer k, such that there is a linear layout ?:V→{1,…,|V|}, such that for every 1?i<|V| there are at most k edges {u,v} with ?(u)?i and ?(v)>i. The neighbourhood-width of a graph is the smallest integer k, such that there is a linear layout ?, such that for every 1?i<|V| the vertices u with ?(u)?i can be divided into at most k subsets each members having the same neighbourhood with respect to the vertices v with ?(v)>i.We show that the neighbourhood-width of a graph differs from its linear clique-width or linear NLC-width at most by one. This relation is used to show that the minimization problem for neighbourhood-width is NP-complete.Furthermore, we prove that simple modifications of neighbourhood-width imply equivalent layout characterizations for linear clique-width and linear NLC-width.We also show that every graph of path-width k or cut-width k has neighbourhood-width at most k+2 and we give several conditions such that graphs of bounded neighbourhood-width have bounded path-width or bounded cut-width.  相似文献   

9.
It is shown that a line graph G has clique-width at most 8k+4 and NLC-width at most 4k+3, if G contains a vertex whose non-neighbours induce a subgraph of clique-width k or NLC-width k in G, respectively. This relation implies that co-gem-free line graphs have clique-width at most 14 and NLC-width at most 7.It is also shown that in a line graph the neighbours of a vertex induce a subgraph of clique-width at most 4 and NLC-width at most 2.  相似文献   

10.
In this paper, we analyze parameter improvement under vertex fusion in a graph G. This is a setting in which a new graph G is obtained after identifying a subset of vertices of G in a single vertex. We are interested in distance parameters, in particular diameter, radius and eccentricity of a vertex v. We show that the corresponding problem is NP-Complete for the three parameters. We also find graph classes in which the problem can be solved in polynomial time.  相似文献   

11.
A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X/{v}) ? {u} is again a dominating set of G, in which case v is called a defender. The secure domination number of G is the cardinality of a smallest secure dominating set of G. In this paper, we show that every graph of minimum degree at least 2 possesses a minimum secure dominating set in which all vertices are defenders. We also characterise the classes of graphs that have secure domination numbers 1, 2 and 3.  相似文献   

12.
The instance of the problem of finding 2-factors in an orientated graph with forbidden transitions consists of an orientated graph G and for each vertex v of G, a graph Hv of allowed transitions at v. Vertices of the graph Hv are the edges incident to v. An orientated 2-factor F of G is called legal if all the transitions are allowed, i.e. for every vertex v, the two edges of F adjacent to it form an edge in Hv. Deciding whether a legal 2-factor exists in G is NP-complete in general. We investigate the case when the graphs of allowed transitions are taken from some fixed class C. We provide an exact characterization of classes C so that the problem is NP-complete. In particular, we prove a dichotomy for this problem, i.e. that for any class C it is either polynomial or NP-complete.  相似文献   

13.
For two vertices u and v in a strong digraph D, the strong distance sd(u,v) between u and v is the minimum size (the number of arcs) of a strong sub-digraph of D containing u and v. For a vertex v of D, the strong eccentricity se(v) is the strong distance between v and a vertex farthest from v. The strong radius srad(D) (resp. strong diameter sdiam(D)) is the minimum (resp. maximum) strong eccentricity among the vertices of D. The lower (resp. upper) orientable strong radius srad(G) (resp. SRAD(G)) of a graph G is the minimum (resp. maximum) strong radius over all strong orientations of G. The lower (resp. upper) orientable strong diameter sdiam(G) (resp. SDIAM(G)) of a graph G is the minimum (resp. maximum) strong diameter over all strong orientations of G. In this paper, we determine the lower orientable strong radius and diameter of complete k-partite graphs, and give the upper orientable strong diameter and the bounds on the upper orientable strong radius of complete k-partite graphs. We also find an error about the lower orientable strong diameter of complete bipartite graph Km,n given in [Y.-L. Lai, F.-H. Chiang, C.-H. Lin, T.-C. Yu, Strong distance of complete bipartite graphs, The 19th Workshop on Combinatorial Mathematics and Computation Theory, 2002, pp. 12-16], and give a rigorous proof of a revised conclusion about sdiam(Km,n).  相似文献   

14.
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class.) We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted at v. In this paper we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is a vertex of degree 1 in the P3 and is adjacent to a blue vertex and with the remaining vertex colored red, and (ii) F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex.  相似文献   

15.
The cutting number of a vertex v of a finite graph G = (V,E) is a natural measure of the extent to which the removal of v disconnects the graph. Precisely, the cutting number c(v) of v is defined as the number of pairs of vertices {u,w} of G such that u,wv and every u-w path contains v. The cutting number c(G) of G is the maximum value of c(v) over all vertices in V. We provide exact bounds on the cutting number of G in terms of order and diameter of the graph.  相似文献   

16.
The eccentric connectivity index \(\xi ^c(G)\) of a connected graph G is defined as \(\xi ^c(G) =\sum _{v \in V(G)}{deg(v) e(v)},\) where deg(v) is the degree of vertex v and e(v) is the eccentricity of v. The eccentric graph, \(G_e\), of a graph G has the same set of vertices as G,  with two vertices uv adjacent in \(G_e\) if and only if either u is an eccentric vertex of v or v is an eccentric vertex of u. In this paper, we obtain a formula for the eccentric connectivity index of the eccentric graph of a regular dendrimer. We also derive a formula for the eccentric connectivity index for the second iteration of eccentric graph of regular dendrimer.  相似文献   

17.
A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f(u)+f(v) = f(w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated nodes. We determine the structure for all integral sum graphs with exactly two saturated nodes, and give an upper bound for the number of edges of a connected integral sum graph with no saturated nodes. We introduce a method of identification on constructing new connected integral sum graphs from given integral sum graphs with a saturated node. Moreover, we show that every graph is an induced subgraph of a connected integral sum graph. Miscellaneous relative results are also presented.  相似文献   

18.
A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f(u)+f(v)=f(w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated nodes. We determine the structure for all integral sum graphs with exactly two saturated nodes, and give an upper bound for the number of edges of a connected integral sum graph with no saturated nodes. We introduce a method of identification on constructing new connected integral sum graphs from given integral sum graphs with a saturated node. Moreover, we show that every graph is an induced subgraph of a connected integral sum graph. Miscellaneous related results are also presented.  相似文献   

19.
For a chordal graph G=(V,E), we study the problem of whether a new vertex uV and a given set of edges between u and vertices in V can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, specify a maximal subset of the proposed edges that can be added along with u, or conversely, a minimal set of extra edges that can be added in addition to the given set, so that the resulting graph is chordal. In order to do this, we give a new characterization of chordal graphs and, for each potential new edge uv, a characterization of the set of edges incident to u that also must be added to G along with uv. We propose a data structure that can compute and add each such set in O(n) time. Based on these results, we present an algorithm that computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time, using a totally new vertex incremental approach. In contrast to previous algorithms, our process is on-line in that each new vertex is added without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added subsequently.  相似文献   

20.
Spanning trails     
For a graph G with distinguished vertices u and v, we give a sufficient condition for the existence of a (u, v)-trail containing every vertex of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号