首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daqing Yang 《Discrete Mathematics》2009,309(13):4614-4623
Let be a directed graph. A transitive fraternal augmentation of is a directed graph with the same vertex set, including all the arcs of and such that for any vertices x,y,z,
1.
if and then or (fraternity);
2.
if and then (transitivity).
In this paper, we explore some generalization of the transitive fraternal augmentations for directed graphs and its applications. In particular, we show that the 2-coloring number col2(G)≤O(1(G)0(G)2), where k(G) (k≥0) denotes the greatest reduced average density with depth k of a graph G; we give a constructive proof that k(G) bounds the distance (k+1)-coloring number colk+1(G) with a function f(k(G)). On the other hand, k(G)≤(col2k+1(G))2k+1. We also show that an inductive generalization of transitive fraternal augmentations can be used to study nonrepetitive colorings of graphs.  相似文献   

2.
For a simple path Pr on r vertices, the square of Pr is the graph on the same set of vertices of Pr, and where every pair of vertices of distance two or less in Pr is connected by an edge. Given a (p,q)-graph G with p vertices and q edges, and a nonnegative integer k, G is said to be k-edge-graceful if the edges can be labeled bijectively by k,k+1,…,k+q−1, so that the induced vertex sums are pairwise distinct, where the vertex sum at a vertex is the sum of the labels of all edges incident to such a vertex, modulo the number of vertices p. We call the set of all such k the edge-graceful spectrum of G, and denote it by egI(G). In this article, the edge-graceful spectrum for the square of paths is completely determined for odd r.  相似文献   

3.
Let be the complement of the intersection graph G of a family of translations of a compact convex figure in Rn. When n=2, we show that , where γ(G) is the size of the minimum dominating set of G. The bound on is sharp. For higher dimension we show that , for n?3. We also study the chromatic number of the complement of the intersection graph of homothetic copies of a fixed convex body in Rn.  相似文献   

4.
We prove a theorem that for an integer s?0, if 12s+7 is a prime number, then the number of nonisomorphic face 3-colorable nonorientable triangular embeddings of Kn, where n=(12s+7)(6s+7), is at least . By some number-theoretic arguments there are an infinite number of integers s satisfying the hypothesis of the theorem. The theorem is the first known example of constructing at least 2αn?+o(n?), ?>1, nonisomorphic nonorientable triangular embeddings of Kn for n=6t+1, . To prove the theorem, we use a new approach to constructing nonisomorphic triangular embeddings of complete graphs. The approach combines a cut-and-paste technique and the index one current graph technique. A new connection between Steiner triple systems and constructing triangular embeddings of complete graphs is given.  相似文献   

5.
Let G be a multigraph with edge set E(G). An edge coloring C of G is called an edge covered coloring, if each color appears at least once at each vertex vV(G). The maximum positive integer k such that G has a k edge covered coloring is called the edge covered chromatic index of G and is denoted by . A graph G is said to be of class if and otherwise of class. A pair of vertices {u,v} is said to be critical if . A graph G is said to be edge covered critical if it is of class and every edge with vertices in V(G) not belonging to E(G) is critical. Some properties about edge covered critical graphs are considered.  相似文献   

6.
In this paper we show that if a square transversal design TDλ[k;u], say D(=(P,B)), admits a class semiregular automorphism group G of order s, then we have a by matrix M with entries from G∪{0} satisfying , where , if i=j, and , otherwise. As an application of (*), we show that any symmetric TD2[12;6] admits no nontrivial elation. We also obtain a result that gives us a restriction on the existence of elations of putative projective planes of composite order.  相似文献   

7.
Zhi-Wei Sun 《Discrete Mathematics》2008,308(18):4231-4245
In this paper we study recurrences concerning the combinatorial sum and the alternate sum , where m>0, n?0 and r are integers. For example, we show that if n?m-1 then
  相似文献   

8.
9.
10.
11.
Given a finite set of 2-dimensional points PR2 and a positive real d, a unit disk graph, denoted by (P,d), is an undirected graph with vertex set P such that two vertices are adjacent if and only if the Euclidean distance between the pair is less than or equal to d. Given a pair of non-negative integers m and n, P(m,n) denotes a subset of 2-dimensional triangular lattice points defined by where . Let Tm,n(d) be a unit disk graph defined on a vertex set P(m,n) and a positive real d. Let be the kth power of Tm,n(1).In this paper, we show necessary and sufficient conditions that [ is perfect] and/or [ is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring (Tm,n(d),w) and .  相似文献   

12.
Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters: the k-domination number γk(G), the connected k-domination number ; the k-independent domination number and the k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then , and that for k?2, if irk(G)=1, if irk(G) is odd, and if irk(G) is even, which generalize some known results.  相似文献   

13.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

14.
For a graph G, its cubicity is the minimum dimension k such that G is representable as the intersection graph of (axis-parallel) cubes in k-dimensional space. (A k-dimensional cube is a Cartesian product R1×R2×?×Rk, where Ri is a closed interval of the form [ai,ai+1] on the real line.) Chandran et al. [L.S. Chandran, C. Mannino, G. Oriolo, On the cubicity of certain graphs, Information Processing Letters 94 (2005) 113-118] showed that for a d-dimensional hypercube Hd, . In this paper, we use the probabilistic method to show that . The parameter boxicity generalizes cubicity: the boxicity of a graph G is defined as the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes in k-dimensional space. Since for any graph G, our result implies that . The problem of determining a non-trivial lower bound for is left open.  相似文献   

15.
An r-graph is a loopless undirected graph in which no two vertices are joined by more than r edges. An r-complete graph on m+1 vertices, denoted by , is an r-graph on m+1 vertices in which each pair of vertices is joined by exactly r edges. A non-increasing sequence π=(d1,d2,…,dn) of nonnegative integers is r-graphic if it is realizable by an r-graph on n vertices. Let be the smallest even integer such that each n-term r-graphic sequence with term sum of at least is realizable by an r-graph containing as a subgraph. In this paper, we determine the value of for sufficiently large n, which generalizes a conjecture due to Erd?s, Jacobson and Lehel.  相似文献   

16.
Given a cubical box C2n+1 of side 2n+1 and a supply of 1×2×4 bricks, it is proved that if n≥2, then
(A1)
one can pack bricks for n odd, and bricks for n even,
(A2)
the capacity of C2n+1 is , and if n≡1 or 2 (mod4), this upper bound for the capacity can be reduced by 1.
  相似文献   

17.
Let G be a 4-connected graph, and let Ec(G) denote the set of 4-contractible edges of G and let denote the set of those edges of G which are not contained in a triangle. Under this notation, we show that if , then we have .  相似文献   

18.
The fractional weak discrepancywdF(P) of a poset P=(V,?) was introduced in [A. Shuchat, R. Shull, A. Trenk, The fractional weak discrepancy of a partially ordered set, Discrete Applied Mathematics 155 (2007) 2227-2235] as the minimum nonnegative k for which there exists a function satisfying (i) if a?b then f(a)+1≤f(b) and (ii) if ab then |f(a)−f(b)|≤k. In this paper we generalize results in [A. Shuchat, R. Shull, A. Trenk, Range of the fractional weak discrepancy function, ORDER 23 (2006) 51-63; A. Shuchat, R. Shull, A. Trenk, Fractional weak discrepancy of posets and certain forbidden configurations, in: S.J. Brams, W.V. Gehrlein, F.S. Roberts (Eds.), The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, Springer, New York, 2009, pp. 291-302] on the range of the wdF function for semiorders (interval orders with no induced ) to interval orders with no , where n≥3. In particular, we prove that the range for such posets P is the set of rationals that can be written as r/s, where 0≤s−1≤r<(n−2)s. If wdF(P)=r/s and P has an optimal forcing cycle C with and , then r≤(n−2)(s−1). Moreover when s≥2, for each r satisfying s−1≤r≤(n−2)(s−1) there is an interval order having such an optimal forcing cycle and containing no.  相似文献   

19.
Hugh Thomas 《Discrete Mathematics》2006,306(21):2711-2723
The usual, or type An, Tamari lattice is a partial order on , the triangulations of an (n+3)-gon. We define a partial order on , the set of centrally symmetric triangulations of a (2n+2)-gon. We show that it is a lattice, and that it shares certain other nice properties of the An Tamari lattice, and therefore that it deserves to be considered the Bn Tamari lattice. We also define a bijection between and the noncrossing partitions of type Bn defined by Reiner.  相似文献   

20.
A k-dimensional box is the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G)≤t+⌈log(nt)⌉−1 and , where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds.F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, and , where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then and this bound is tight. We also show that if G is a bipartite graph then . We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to . Interestingly, if boxicity is very close to , then chromatic number also has to be very high. In particular, we show that if , s≥0, then , where χ(G) is the chromatic number of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号