首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A new coloring theorem of Kneser graphs   总被引:1,自引:0,他引:1  
In 1997, Johnson, Holroyd and Stahl conjectured that the circular chromatic number of the Kneser graphs KG(n,k) is equal to the chromatic number of these graphs. This was proved by Simonyi and Tardos (2006) [13] and independently by Meunier (2005) [10], if χ(KG(n,k)) is even. In this paper, we propose an alternative version of Kneser's coloring theorem to confirm the Johnson-Holroyd-Stahl conjecture.  相似文献   

2.
Let c be a proper k-coloring of a connected graph G and Π=(C1,C2,…,Ck) be an ordered partition of V(G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v):=(d(v,C1),d(v,C2),…,d(v,Ck)), where d(v,Ci)=min{d(v,x)|xCi},1≤ik. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by χL(G). In this paper, we study the locating chromatic number of Kneser graphs. First, among some other results, we show that χL(KG(n,2))=n−1 for all n≥5. Then, we prove that χL(KG(n,k))≤n−1, when nk2. Moreover, we present some bounds for the locating chromatic number of odd graphs.  相似文献   

3.
4.
The acyclic list chromatic number of every planar graph is proved to be at most 7. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 83–90, 2002  相似文献   

5.
We investigate the relation between the multichromatic number (discussed by Stahl and by Hilton, Rado and Scott) and the star chromatic number (introduced by Vince) of a graph. Denoting these by χ* and η*, the work of the above authors shows that χ*(G) = η*(G) if G is bipartite, an odd cycle or a complete graph. We show that χ*(G) ≤ η*(G) for any finite simple graph G. We consider the Kneser graphs , for which χ* = m/n and η*(G)/χ*(G) is unbounded above. We investigate particular classes of these graphs and show that η* = 3 and η* = 4; (n ≥ 1), and η* = m - 2; (m ≥ 4). © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 137–145, 1997  相似文献   

6.
7.
Let r, k be positive integers, s(<r), a nonnegative integer, and n=2r-s+k. The set of r-subsets of [n]={1,2,…,n} is denoted by [n]r. The generalized Kneser graph K(n,r,s) is the graph whose vertex-set is [n]r where two r-subsets A and B are joined by an edge if |AB|?s. This note determines the diameter of generalized Kneser graphs. More precisely, the diameter of K(n,r,s) is equal to , which generalizes a result of Valencia-Pabon and Vera [On the diameter of Kneser graphs, Discrete Math. 305 (2005) 383-385].  相似文献   

8.
A clique coloring of a graph is a coloring of the vertices so that no maximal clique is monochromatic (ignoring isolated vertices). The smallest number of colors in such a coloring is the clique chromatic number. In this paper, we study the asymptotic behavior of the clique chromatic number of the random graph ??(n,p) for a wide range of edge‐probabilities p = p(n). We see that the typical clique chromatic number, as a function of the average degree, forms an intriguing step function.  相似文献   

9.
In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous work on the NP-completeness of the harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously cographs and interval graphs, we prove that the problem is also NP-complete for connected interval and permutation graphs.  相似文献   

10.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

11.
《Journal of Graph Theory》2018,87(2):135-148
Let ( be two positive integers. We generalize the well‐studied notions of ‐colorings and of the circular chromatic number to signed graphs. This implies a new notion of colorings of signed graphs, and the corresponding chromatic number χ. Some basic facts on circular colorings of signed graphs and on the circular chromatic number are proved, and differences to the results on unsigned graphs are analyzed. In particular, we show that the difference between the circular chromatic number and the chromatic number of a signed graph is at most 1. Indeed, there are signed graphs where the difference is 1. On the other hand, for a signed graph on n vertices, if the difference is smaller than 1, then there exists , such that the difference is at most . We also show that the notion of ‐colorings is equivalent to r‐colorings (see [12] (X. Zhu, Recent developments in circular coloring of graphs, in Topics in Discrete Mathematics Algorithms and Combinatorics Volume 26 , Springer Berlin Heidelberg, 2006, pp. 497–550)).  相似文献   

12.
Weakening the notion of a strong (induced) matching of graphs, in this paper, we introduce the notion of a semistrong matching. A matching M of a graph G is called semistrong if each edge of M has a vertex, which is of degree one in the induced subgraph G[M]. We strengthen earlier results by showing that for the subset graphs and for the Kneser graphs the sizes of the maxima of the strong and semistrong matchings are equal and so are the strong and semistrong chromatic indices. Similar properties are conjectured for the n‐dimensional cube. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 39–47, 2005  相似文献   

13.
14.
15.
On adjacent-vertex-distinguishing total coloring of graphs   总被引:40,自引:0,他引:40  
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree.  相似文献   

16.
Ko-Wei Lih 《Discrete Mathematics》2008,308(20):4653-4659
A graph is said to be a cover graph if it is the underlying graph of the Hasse diagram of a finite partially ordered set. We prove that the generalized Mycielski graphs Mm(C2t+1) of an odd cycle, Kneser graphs KG(n,k), and Schrijver graphs SG(n,k) are not cover graphs when m?0,t?1, k?1, and n?2k+2. These results have consequences in circular chromatic number.  相似文献   

17.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

18.
Let G be a graph and χl(G) denote the list chromatic number of G. In this paper we prove that for every graph G for which the length of each cycle is divisible by l (l≥3), χl(G)≤3.  相似文献   

19.
This article proves the following result: Let G and G′ be graphs of orders n and n′, respectively. Let G* be obtained from G by adding to each vertex a set of n′ degree 1 neighbors. If G* has game coloring number m and G′ has acyclic chromatic number k, then the Cartesian product GG′ has game chromatic number at most k(k + m ? 1). As a consequence, the Cartesian product of two forests has game chromatic number at most 10, and the Cartesian product of two planar graphs has game chromatic number at most 105. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 261–278, 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号