首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Huang S  Wang F  Gan L  Yuan G  Zhou J  Zhang S 《Organic letters》2006,8(2):277-279
[reaction: see text] Vicinal fullerendiol is oxidized to fullerendione in good yield by (diacetoxy)iodobenzene. The resulting cage-opened fullerendione reacts with oxygen nucleophiles in the presence of BF(3).Et(2)O to form fullerene hemiketal/ketal derivatives through coupling of the two carbonyl groups. Fullerene-mixed peroxide derivatives are involved in all these reactions. The compounds are characterized by spectroscopic data and single-crystal X-ray analysis.  相似文献   

2.
Yu Y  Xie X  Zhang T  Liu S  Shao Y  Gan L  Li Y 《The Journal of organic chemistry》2011,76(24):10148-10153
Oxidation of the fullerenediol C(60)(OH)(2)(O)(OAc)(OOtBu)(3) with PhI(OAc)(2) yields the open-cage fullerene derivative C(60)(O)(2)(O)(OAc)(OOtBu)(3)2 with an 11-membered orifice. Compound 2 reacts with aniline to form a new open-cage derivative with a 14-membered orifice, which yields an 18-membered open-cage fullerene derivative upon addition of another molecule of aniline. Two different types of aniline derivatives with either electron-donating or electron-withdrawing substituents can be added sequentially, affording an unsymmetrical moiety in the open-cage structure. Reduction potentials of the 18-membered open-cage fullerene derivatives can be fine-tuned by changing the substituents on the aniline. The results provide new insights about the mechanism of open-cage reactions of fullerene-mixed peroxide.  相似文献   

3.
Two novel open-cage fullerene derivatives bearing a 12-membered-ring orifice on the fullerene cage have been isolated. Removal of the N-MEM protective group leads to the first open-cage [60]fullerene derivative without organic addends on the rim of the orifice. [structure: see text]  相似文献   

4.
A novel open-cage [60]fullerene derivative, having two sulfur atoms on the rim of its 13-membered-ring orifice, has been isolated and characterized. Extensive studies on the N-MEM group reactivity of this as well as other previously reported open-cage [60]fullerene derivatives led to several new open-cage [60]fullerene adducts.  相似文献   

5.
The reaction of fullerene C(60) with phthalazine was studied both in solution and in the solid state using the high-speed vibration-milling technique. The reaction in solution gave open-cage fullerene derivative 1 in 44% yield by a one-pot reaction. In contrast, the solid-state reaction afforded dimeric derivative 2 as the sole product. Dimeric derivative 2 was found to undergo intramolecular [2 + 2] cycloaddtion between the two C(60) cages located in close proximity to give a new C(60) dimer 6 in quantitative yield. The structures of these new derivatives of C(60) were determined by spectroscopic methods, and the electrochemical behavior of 2 and 6 was also studied.  相似文献   

6.
We describe a photoswitch fabricated on indium tin oxide (ITO) as a self-assembled monolayer (SAM) of two fullerene molecules, a purely organic [60]fullerene that generates an anodic current and a [70]fullerene doped with a single iron atom. This device generates a bidirectional photocurrent upon irradiation at 340 and 490 nm. The new [70]fullerene iron complex bearing three rigid carboxylic acid legs, Fe[C(70)(C(6)H(4)C(6)H(4)COOH)(3)]Cp, generates only a cathodic current upon photoexcitation between 350 and 700 nm, whereas the organic [60]fullerene absorbs at wavelengths shorter than 500 nm. The quantum efficiency of the photocurrent generation by the mixed SAM is comparable to that of a single-component SAM, indicating that the individual diode molecules on ITO generate photocurrents independently with little cross talk.  相似文献   

7.
The addition reaction of the N-MEM-ketolactam derivative of [60]fullerene with phenyl, p-Br-phenyl, and p-MeO-phenyl hydrazines proceeds regioselectively, affording three open-cage fullerene derivatives bearing a 15-membered-ring orifice on the fullerene cage. Both experimental data and theoretical calculations were utilized for the structure determination of the new [60]fullerene adducts.  相似文献   

8.
[60]Fullerene mixed peroxides C60(O)(OOtBu)4 exhibit chemo- and regioselective reactions under mild conditions. The epoxy moiety is opened by ferric chloride to form vicinal hydroxy chloride C60Cl(OH)(OOtBu)4. BF3 is also effective in opening the epoxy moiety. The O-O bond of the fullerene mixed peroxide is cleaved by aluminum chloride to form both [5,6]- and [6,6]-fullerene hemiketals (oxohomo[60]fullerenes). A Hock-type rearrangement is proposed for the formation of the hemiketals, in which a fullerene C-C bond is cleaved. Lewis acids and/or visible light can initiate isomerization of the hemiketal isomers. Single-crystal X-ray analysis and theoretical calculations confirmed the results.  相似文献   

9.
(3)He has been inserted into the cavity of an open-cage fullerene derivative close to room temperature, reaching an incorporation fraction of 0.1%. The rate of escape of (3)He from this fullerene was monitored by (3)He NMR to yield the activation barrier and to compare the size of the orifice to those of other open-cage fullerenes. The equilibrium constant was also measured.  相似文献   

10.
Synthesis of emerald green fullerenes (EF) C60[C(CH3)(CO2Et)2]6 and C60[C(CH3)(CO2-t-Bu)2]6 was performed by using hexaanionic C60 intermediate (C60-6) as a reagent in one-pot reaction for attaching six alkyl ester addends on one C60 cage. These EF compounds exhibit intense optical absorption over 600-940 nm, the longest optical absorption of the C60 cage among many [60]fullerene derivatives synthesized.  相似文献   

11.
A facile, one-step reaction using inexpensive reagents has been developed for functionalization of [60]fullerene, where the reaction of C(60) with FeCl(3) in chlorobenzene proceeded at 25 °C with 100% conversion, yielding a mixture of polyarylated products containing pentaaryl(chloro)[60]fullerene, C(60)(C(6)H(4)Cl)(5)Cl (up to 29%) and other polyarylated fullerenes (number of aryl groups is in a range from 5 to 10).  相似文献   

12.
In the field of open-cage fullerenes, there was a lack of a universal standard that could correlate and quantify the orifice size of open-cage fullerenes. One cannot compare the relative orifice size by simple comparison of the number of atoms that composes the orifice. We present a general term for easy estimation of relative orifice size by defining an index for open-cage fullerenes. We estimated the corresponding effective areas A(area) for orifices of open-cage fullerenes by matching calculated activation energies Ea(calcd) for hydrogen release from open-cage fullerenes (B3LYP/6-31G**//B3LYP/3-21G) to the computed energies required for a hydrogen molecule passing through a cyclo[n]carbon ring. Then we define an index K(orifice) based on experimental hydrogen release rate, where K(orifice) = ln k/k degrees (k is rate constant of hydrogen-release rate of any open-cage fullerenes taken for comparison at 160 degrees C; k degrees is the hydrogen release rate from H2@4a taken as the standard compound). We synthesized several open-cage fullerenes and studied kinetics of a set of H2-encapsulated open-cage fullerenes to evaluate their K values. A correlation of the index K(orifice) with the effective areas A(area) showed a good linear fit (r2 = 0.972) that demonstrated a good interplay between experiment and theory. This allows one to estimate K(orifice) index and/or relative rate k of hydrogen release through computing activation energy Ea(calcd) for a designed open-cage fullerene.  相似文献   

13.
The encapsulation of molecular hydrogen into an open-cage fullerene having a 16-membered ring orifice has been investigated. It is achieved by the pressurization of H2 at 0.6-13.5 MPa to afford endohedral hydrogen complexes of open-cage fullerenes in up to 83% yield. The efficiency of encapsulation is dominantly dependent on both H2 pressure and temperature. Hydrogen molecules inside the C60 cage are observed in the range of -7.3 to -7.5 ppm in 1H NMR spectra, and the formations of hydrogen complexes are further confirmed by mass spectrometry. The trapped hydrogen is released by heating. The activation energy barriers for this process are determined to be 22-24 kcal/mol. The DSC measurement of the endohedral H2 complex reveals that the escape of H2 from the C60 cage corresponds to an exothermic process, indicating that encapsulated H2 destabilizes the fullerene.  相似文献   

14.
2,5-Dimethoxycarbonyl[60]fulleropyrrolidine (1) is acylated with various chlorocarbonyl compounds to give fullerene derivatives with the general formula C(60)(MeOOCCH)(2)NC(O)R, R = (CH(2))(5)Br, (CH(2))(8)C(O)Cl (3), (CH(2))(4)C(O)Cl, or cis-C(6)H(4)(C(O)Cl. The monoacylated sebacoyl derivative 3 readily reacts with alcohols and amines such as methanol, diethylamine, glycine methyl ester, and aza-18-crown-6 through the remaining chlorocarbonyl group. Chromatography of 3 on silica gel converts it into the corresponding acid C(60)(MeOOCCH)(2)NC(O)(CH(2))(8)COOH (4). Treating 4 with PCl(5) regenerates the precursor 3 quantitatively. Piperazine reacts with 4 in the presence of DCC and BtOH to form a bisfullerene derivative in which two sebacoyl chains and the piperazine act as the bridge between two molecules of 1. Other molecules with multifunctional groups react with 4 similarly to form multifullerene derivatives. NMR data indicate that the rotation of the relatively bulky phthaloyl group is hindered around the amide bond N [bond] C(O), the rotation barrier of which is 15.06 kcal/mol. The relative stereochemistry of the 2,5-dimethoxycarbonyl groups is established by (1)H NMR spectra and further confirmed by resolution of the enantiomeric 2,5-trans-isomer of the starting material 1.  相似文献   

15.
Two-electron reduction of penta(organo)[60]fullerenes C(60)Ar(5)H (Ar = Ph and biphenyl) by potassium/mercury amalgam afforded potassium complexes of the corresponding open-shell radical dianions [K+(thf)n]2[C60Ar5(2-.)]. These compounds were characterized by UV-visible-near-IR and electron spin resonance spectroscopy in solution. Anaerobic crystallization of [K+(thf)n]2[C60(biphenyl)(5)(2-.)] that exists largely as a monomer in solution gave black crystals of its dimer [K+(thf)3]4[(biphenyl)5C60-C60(biphenyl)5(4-)], in which the two fullerene units are connected by a C-C single bond [1.577(11) A] as determined by X-ray diffraction. Three-electron reduction of C60Ar5H with metallic potassium gave a black-green trianion [K+(thf)n]3[C60Ar5(3-)]. The reaction of the trianion with an alkyl halide RBr (R = PhCH(2) and Ph(2)CH) regioselectively afforded a hepta-organofullerene C60Ar5R2H, from which a potassium complex [K+(thf)n][C60(biphenyl)5(CH2Ph)(2)(-)] and a palladium complex Pd[C60(biphenyl)5(CH2Ph)2](pi-methallyl) as well as octa-organofullerene compounds C60(biphenyl)5(CH2Ph)3H2 and Ru[C60(biphenyl)5(C2Ph)3H]Cp were synthesized. These compounds possess a dibenzo-fused corannulene pi-electron conjugated system and are luminescent.  相似文献   

16.
We report Arbuzov-type reactions of chlorofullerene C(60)Cl(6) with trialkyl phosphites producing highly functionalized fullerene derivatives C(60)[P(O)(OR)(2)](5)H with high yields. The designed family of [60]fullerene phosphonic acids and their esters showed unusual properties which might find valuable material science applications.  相似文献   

17.
We put ammonia into an open-cage fullerene with a 20-membered ring ( 1) as the orifice and examined the properties of the complex using NMR and MALDI-TOF mass spectroscopy. The proton NMR shows a broad resonance corresponding to endohedral NH 3 at delta H = -12.3 ppm relative to TMS. This resonance was seen to narrow when a (14)N decoupling frequency was applied. MALDI spectroscopy confirmed the presence of both 1 ( m/ z = 1172) and 1 + NH 3 ( m/ z = 1189), and integrated intensities of MALDI peak trains and NMR resonances indicate an incorporation fraction of 35-50% under our experimental conditions. NMR observations showed a diminished incorporation fraction after 6 months of storage at -10 degrees C, which indicates that ammonia slowly escapes from the open-cage fullerene.  相似文献   

18.
The addition of N-(diphenylmethylene)glycinate esters (Ph2C=NCH2CO2R) to [60]fullerene under Bingel conditions gives [60]fullerenyldihydropyrroles and not methano[60]fullerenyl iminoesters [C60C(CO2R)(N=CPh2)] as previously reported. Unequivocal evidence for the structure of C60C(CO2Et)(N=CPh2) was provided by INADEQUATE NMR studies on 13C enriched material. New mechanistic details are proposed to account for the formation of [60]fullerenyldihydropyrroles and their reductive ring-opening reactions.  相似文献   

19.
Trisporphyrinatozinc(II) (1-Zn) with imidazolyl groups at both ends of the porphyrin self-assembles exclusively into a light-harvesting cyclic trimer (N-(1-Zn)(3)) through complementary coordination of imidazolyl to zinc(II). Because only the two terminal porphyrins in 1-Zn are employed in ring formation, macrocycle N-(1-Zn)(3) leaves three uncoordinated porphyrinatozinc(II) groups as a scaffold that can accommodate ligands into the central pore. A pyridyl tripodal ligand with an appended fullerene connected through an amide linkage (C(60)-Tripod) was synthesized by coupling tripodal ligand 3 with pyrrolidine-modified fullerene, and this ligand was incorporated into N-(1-Zn)(3). The binding constant for C(60)-Tripod in benzonitrile reached the order of 10(8) M(-1). This value is ten times larger than those of pyridyl tetrapodal ligand 2 and tripodal ligand 3. This behavior suggests that the fullerene moiety contributes to enhance the binding of C(60)-Tripod in N-(1-Zn)(3). The fluorescence of N-(1-Zn)(3) was almost completely quenched (approximately 97 %) by complexation with C(60)-Tripod, without any indication of the formation of charge-separated species or a triplet excited state of either porphyrin or fullerene in the transient absorption spectra. These observations are explained by the idea that the fullerene moiety of C(60)-Tripod is in direct contact with the porphyrin planes of N-(1-Zn)(3) through fullerene-porphyrin pi-pi interactions. Thus, C(60)-Tripod is accommodated in N-(1-Zn)(3) with a pi-pi interaction and two pyridyl coordinations. The cooperative interaction achieves a sufficiently high affinity for quantitative and specific introduction of one equivalent of tripodal guest into the antenna ring, even under dilute conditions ( approximately 10(-7) M) in polar solvents such as benzonitrile. Additionally, complete fluorescence quenching of N-(1-Zn)(3) when accommodating C(60)-Tripod demonstrates that all of the excitation energy collected by the nine porphyrins migrates rapidly over the macrocycle and then converges efficiently on the fullerene moiety by electron transfer.  相似文献   

20.
Three pyridine-substituted fullerene adducts, bis(2,2'-bipyridine)(2'-phenyl-5'-(2-pyridinyl)-2'H-[5,6]fullereno(C(60)-I(h))[1,9]pyrazole)ruthenium-bis(hexafluorophosphate) (1), bis(2,2'-bipyridine)(2'-phenyl-5'-(4-(4'-methyl-2,2'-bipyridinyl))-2'H-[5,6]fullereno(C(60)-I(h))[1,9]pyrazole)ruthenium-bis(hexafluorophosphate) (2), and bis(2,2'-bipyridine)(1',5'-dihydro-3'-methyl-2'-(4-(4'-methyl-2,2'-bipyridinyl))-2'H-[5,6]fullereno(C(60)-I(h))[1,9]pyrrole)ruthenium-bis(hexafluorophosphate) (3), have been prepared. The common features for these complexes are the short bridges between the fullerene and the pyridine moieties. [structure: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号