首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transmembrane electrical potential (TMEP) across two commercial nanofiltration membranes (ESNA1-K and Filmtec NF) was investigated in KCl and MgCl(2) solutions. TMEP was measured in a wide range of salt concentrations (1-60 mol·m(-3)) and pH values (3-10) at the feed side, with pressure differences in the range of 0.1-0.6 MPa. A two-layer model based on the Nernst-Planck equation was proposed to describe the relation between TMEP and permeation flux. From the pattern of these curves, the information of membrane structure could be deduced. In the concentration range investigated, TMEP in KCl solutions was always positive and decreased as the salt concentration increased. The contribution of the membrane potential to the TMEP decreased. TMEP was greatly affected by the feed pH. When the feed pH increased, the mobility of cations increased, which indicated that the charges of NF membranes were more negative. The zero point of TMEP and the minimum of rejection in KCl solution were consistent and occurred at the isoelectric point of NF membranes, while in MgCl(2) solution the zero point of TMEP located at a higher pH value. The TMEP in MgCl(2) solutions changed its sign at a given concentration, and by calculating the transport number the location of the minimum rejection could be determined.  相似文献   

2.
Two commercial nanofiltration (NF) membranes, viz., Desal-HL and NF 700 MWCO were investigated experimentally using neutral and charged solutes, viz., glucose, sodium chloride and magnesium chloride. Effect of pH was studied for sodium chloride rejection and isoelectric point of the membrane was deduced. Experimental results were analyzed using Donnan steric pore and dielectric exclusion models. Dielectric exclusion arises due to the difference in dielectric constant between the bulk and the nano-pore. Born dielectric effect was used as dielectric exclusion phenomena in the present investigation. Stokes–Einstein, Born effective and Pauling radii were used for theoretical simulation, which accurately predicted different charge densities. Empirical correlations were proposed between charge density, concentration and pH for each radius. Charge density decreased drastically when dielectric exclusion term was included in the theoretical model, which showed the real physical characteristics of the membranes employed. Charge density and radius of pore was found to be an important surface parameter in predicting the separation effects in NF membranes.  相似文献   

3.
4.
Tangential streaming potential (TSP) measurements have been carried out so as to assess the electrokinetic properties of the active layer of organic nanofiltration (NF) membranes. Due to the porous structure of NF membranes, cares must be taken to convert the experimental data into zeta potential. Indeed, an assumption that is implicitly made in Smoluchowski's theory (or in related approaches accounting for the surface conduction phenomenon) is that both streaming and conduction currents involved in the streaming potential process flow through an identical path. Such an assumption does not hold with porous membranes since the conduction current is expected to flow wherever the electric conductivity differs from zero. Consequently, a non-negligible share of the conduction current is likely to flow through the membrane body filled with the electrolyte solution. This phenomenon has been taken into account by carrying out a series of TSP measurements at various channel heights. Experiments have been conducted with various electrolyte solutions. The inferred zeta potentials have been further converted into membrane volume charge densities which have been used to predict the membrane performances in terms of rejection rates. The conventional NF theory, i.e. based on a steric/Donnan exclusion mechanism, has been found to be unable to describe the experimental rejection rates. Using the volume charge density of the membrane as an adjustable parameter, it has been shown that the conventional theory even predicts the opposite sign for the membrane charge. On the other hand, the experimental rejection rates have been well described by including dielectric effects in the exclusion mechanism. In this case, a noticeable lowering of the effective dielectric constant of the electrolyte solution inside pores has been predicted (with respect to the bulk value).  相似文献   

5.
Influence of steric, electric, and dielectric effects on membrane potential   总被引:1,自引:0,他引:1  
The membrane potential arising through nanofiltration membranes separating two aqueous solutions of the same electrolyte at identical hydrostatic pressures but different concentrations is investigated within the scope of the steric, electric, and dielectric exclusion model. The influence of the ion size and the so-called dielectric exclusion on the membrane potential arising through both neutral and electrically charged membranes is investigated. Dielectric phenomena have no influence on the membrane potential through neutral membranes, unlike ion size effects which increase the membrane potential value. For charged membranes, both steric and dielectric effects increase the membrane potential at a given concentration but the diffusion potential (that is the high-concentration limit of the membrane potential) is affected only by steric effects. It is therefore proposed that membrane potential measurements carried out at high salt concentrations could be used to determine the mean pore size of nanofiltration membranes. In practical cases, the membrane volume charge density and the dielectric constant inside pores depend on the physicochemical properties of both the membrane and the surrounding solutions (pH, concentration, and chemical nature of ions). It is shown that the Donnan and dielectric exclusions affect the membrane potential of charged membranes similarly; namely, a higher salt concentration is needed to screen the membrane fixed charge. The membrane volume charge density and the pore dielectric constant cannot then be determined unambiguously by means of membrane potential experiments, and additional independent measurements are in need. It is suggested to carry out rejection rate measurements (together with membrane potential measurements).  相似文献   

6.
Dielectric spectroscopy (DS) was applied to a nanofiltration (NF) membrane to detect its double-layer structure and ion permeation. Dielectric measurements were carried out on the systems composed of the NF membrane NTR7450 and dilute solutions of eight electrolytes, LiCl, NaCl, KCl, NH(4)Cl, MgCl(2), CaCl(2), BaCl(2), and CuCl(2). Two relaxations were observed in the frequency range from 40 Hz to 4 MHz for each system. On the basis of characteristics of the dielectric spectra and the Maxwell-Wagner interfacial polarization theory, the low-frequency relaxation was attributed to inhomogeneity of the membrane structure itself, whereas the high-frequency relaxation was attributed to interfacial polarization between the membrane and the solution. A multiphase dielectric model previously developed by one of the authors and co-workers was adopted to present systems to analyze the dielectric spectra, and electric parameters, i.e., capacitance and conductance, of the two layers composing the membrane were obtained. The electric properties estimated for the two layers were different and changed with the environment in a different manner. Further analyses suggest that the two layers had a different separation mechanism due to their difference in materials, looseness, and fixed charge content. The fixed charge density of one layer was estimated, and the ion permeation difficulties in both layers was compared. This research revealed that DS was by far an effective method to obtain detailed electric parameters about the inner multilayer structure of the NF membrane and to elucidate separation mechanisms of each layer.  相似文献   

7.
Dielectric exclusion of ions from membranes   总被引:7,自引:0,他引:7  
Dielectric exclusion is caused by the interactions of ions with the bound electric charges induced by ions at interfaces between media of different dielectric constants. It is considered as one of mechanisms of nanofiltration. The transport properties of capillary model are expressed through ion distribution and diffusion coefficients. Due to local equilibrium the distribution coefficient is directly related to the excess solvation energy of ion. First, this energy is considered for single ions in single neutral pores in terms of pore size, ion charge, dielectric constants of solvent and membrane matrix and pore geometry. The dielectric exclusion from pores with closed geometry like circular cylinders is shown to be essentially stronger than that from pores with relatively open geometry like slits. Furthermore, the role of finite membrane porosity is analysed for the model of infinite slabs with alternating dielectric constants. The presence of other ions is accounted for within the scope of a mean-field approach, and the screening of dielectric exclusion is thus introduced and considered in some detail. A fixed electric charge is shown to cause additional screening. At the same time the dielectric exclusion makes the Donnan exclusion of ions stronger. Therefore the interaction between those two rejection mechanisms turns out to be non-trivial. Finally, the effect of solvent molecular structure is considered within the scope of non-local electrostatics. It is shown that the solvent non-locality typically results in somewhat stronger dielectric exclusion, however, its most important effect is slowing down the decline of dielectric exclusion with increasing bulk electrolyte concentration.  相似文献   

8.
Removal of organic contaminants by RO and NF membranes   总被引:4,自引:0,他引:4  
Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio.  相似文献   

9.
Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, were evaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-O-glucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150–300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins. Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300–500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.  相似文献   

10.
利用测量流动电位的方法考察了纳滤膜的表面电学性能对纳滤膜的截留性能的影响.首先,采用不同功能层材料制备了复合纳滤(NF)膜,考察功能层的交联时间、单体结构等对表面电性能的影响,研究纳滤膜对不同无机盐的选择截留性能与表面电性能的关系.通过流动电位法测定纳滤膜的表面电学参数,如流动电位(ΔE)、zeta电位(ζ)和表面电荷密度(σd).实验表明,这些电学参数的变化与功能层交联时间和纳滤膜截留率的变化一致,在交联时间为45 s时,3种电学参数的绝对值均最大,而纳滤膜对无机盐的截留率也最大.复合纳滤膜zeta电位的绝对值(|ζ|)按照Na2SO4>MgSO4>MgCl2变化,同截留率的变化相同.带侧基单体交联后得到的纳滤膜的表面电性能参数的绝对值小于不带侧基单体的.因此,流动电位法可用于研究复合纳滤膜的截留机理和功能层结构.  相似文献   

11.
Transport of four metallic salts (CuCl2, ZnCl2, NiCl2 and CaCl2) through a polyamide nanofiltration (NF) membrane has been investigated experimentally from rejection rate and tangential streaming potential measurements. Rejection rates have been further analyzed by means of the steric, electric and dielectric exclusion (SEDE) homogeneous model with the effective dielectric constant of the solution inside pores as the single adjustable parameter.  相似文献   

12.
The role for many-body dipolar (dispersion) potentials in ion-solvent and ion-solvent-interface interactions is explored. Such many-body potentials, accessible in principle from measured dielectric data, are necessary in accounting for Hofmeister specific ion effects. Dispersion self-energy is the quantum electrodynamic analogue of the Born electrostatic self-energy of an ion. We here describe calculations of dispersion self-free energies of four different anions (OH-, Cl-, Br-, and I-) that take finite ion size into account. Three different examples of self-free energy calculations are presented. These are the self-free energy of transfer of an ion to bulk solution, which influences solubility; the dispersion potential acting between one ion and an air-water interface (important for surface tension calculations); and the dispersion potential acting between two ions (relevant to activity coefficient calculations). To illustrate the importance of dispersion self-free energies, we compare the Born and dispersion contributions to the free energy of ion transfer from water to air (oil). We have also calculated the change in interfacial tension with added salt for air (oil)-water interfaces. A new model is used that includes dispersion potentials acting on the ions near the interface, image potentials, and ions of finite size that are allowed to spill over the solution-air interface. It is shown that interfacial free energies require a knowledge of solvent profiles at the interface.  相似文献   

13.
A series of nanofiltration (NF) membranes were prepared with poly(amido-amine) (PAMAM) and trimesoyl chloride (TMC) via in situ interfacial polymerization.The effects of the generation number and concentration of PAMAM on the properties of NF membranes were discussed.Fourier transform infrared spectroscopy (FTIR-ATR),atomic force micrgscopy (AFM),scanning electron microscopy (SEM) and contact angle measurements were employed to characterize the resulting membranes.The nanofiltration performances were eva...  相似文献   

14.
通过对筛选的3种纳滤膜结构及对低聚壳聚糖、氨基葡萄糖和NaAc溶液的截留性能和纯化过程研究发现,3种纳滤膜的膜面粗糙度大小依次为:DL>DK>NTR-7450,均能对低聚壳聚糖100%截留,但只能部分截留氨基葡萄糖和NaAc,其截留率大小为:DK>DL>NTR-7450。从低聚壳聚糖的纯化工艺要求和抗污染能力方面考虑,NTR-7450纳滤膜更具有工业应用价值。此外,纳滤膜对溶质的分离效果主要由空间位阻和静电效应决定,综合作用结果导致了低聚壳聚糖体系中的各种主要阳离子在纳滤过程中存在竞争透过,截留次序依次为:高分子低聚壳聚糖>氨基葡萄糖>Na+>H+。在Donnan效应和电离平衡的影响下,体系中Ac-在纳滤过程中也被脱出。纳滤纯化低聚壳聚糖制备液在技术上可行。  相似文献   

15.
采用静电位阻模型对纳滤膜的跨膜电位进行了理论解析, 考察了溶液体积通量密度、原料液浓度、阴阳离子扩散系数比、膜孔半径和膜体积电荷密度对KCl(1-1型电解质)和MgCl2(2-1型电解质)中的纳滤膜跨膜电位的影响. 研究结果表明, 随着通量密度的增大, KCl和MgCl2的跨膜电位线性程度增强; 两种电解质的跨膜电位均随着原料液浓度和膜孔半径的增大而下降; 在不同的考察范围内, 阴阳离子扩散系数比对1-1型和2-1型电解质的跨膜电位的影响差别较大; KCl的跨膜电位随着膜体积电荷密度的变化关于零点呈现出对称性, 而MgCl2的跨膜电位零点则出现在膜体积电荷密度为负的条件下.  相似文献   

16.
Nanofiltration (NF) membranes possess the intermediate molecular weight cut-off between reverse osmosis membranes and ultrafiltration membranes, and also have rejection to inorganic salts. So one can assume that NF membranes have charged pore structure. We have developed the electrostatic and steric-hindrance (ES) model from the steric-hindrance pore (SHP) model and the Teorell-Meyer-Sievers (TMS) model (Wang et al., J. Chem. Eng. Japan, 28 (1995) 372) to predict the transport performance of charged solutes through NF membranes based on their charged pore structure. In this article, by doing the permeation experiments of aqueous solutions of neutral solutes and sodium chloride, the structural parameters (the pore radius and the ratio of membrane porosity to membrane thickness) and the charge density of NF membranes (Desal-S, NF-40, NTR7450 and G-20) were estimated on the basis of SHP model and the TMS model, respectively. Then, we selected an aqueous solution of different tracer charged solutes (sodium benzenesulfonate, sodium naphthalenesulfonate and sodium tetraphenyl-borate) and a supporting salt (sodium chloride) to verify the ES model. The prediction based on the ES model was in good agreement with the experimental results.  相似文献   

17.
解读纳滤:一种具有纳米尺度效应的分子分离操作   总被引:1,自引:0,他引:1  
方彦彦  李倩  王晓琳 《化学进展》2012,24(5):863-870
纳滤膜是20世纪80年代末期发展起来的一种广泛用于液体分离的新型分离膜。早期研究中,先后提出的基于筛分效应的细孔模型,基于静电效应的电荷模型,以及同时考虑上述两种效应的静电位阻模型和道南位阻模型等为人们更好地理解纳滤膜分离机理和指导纳滤膜过程应用发挥了十分重要的作用。然而由于这些具有“疏松型反渗透膜”特点的纳滤膜没有相应的膜性能预测评价软件,使得针对具体应用过程的纳滤膜的大规模标准化应用受到了一定的制约。为此,结合上述模型,根据一些特定实验拟合确定混合盐体系同号离子间的竞争作用和异号离子间的调节作用,提出了一个适于混合盐体系的纳滤膜分离性能评价模型,促进了纳滤膜技术在水处理过程的大规模推广。最近,根据纳滤膜对离子选择性分离性能及其伴随的动电性质的细致而深入的实验研究,发现仅考虑筛分效应和静电效应并不能完全合理地解释纳滤膜的分离性能,且在动电性质的解析上也存在一定缺陷,进而对纳滤膜纳米级孔径引起的特殊效应和溶液体系中复杂相互作用引起的荷电性质变化有了更为深刻的认识和理解,提出并定量分析了离子透过纳滤膜时存在的介电排斥效应。  相似文献   

18.
A series of nanofiltration (NF) membranes were prepared with poly(amido-amine) (PAMAM) and trimesoyl chloride (TMC) viu in situ interfacial polymerization.The effects of the generation number and concentration of PAMAM on the properties of NF membranes were discussed.Fourier transform infrared spectroscopy (FTIR-ATR),atomic force microscopy (AFM),scanning electron microscopy (SEM) and contact angle measurements were employed to characterize the resulting membranes.The nanofiltration performances were evaluated with solutions of NaCl,Na2SO4,MgCl2 and MgSO4,respectively.FTIR-ATR spectra indicated that TMC reacted more sufficiently with the higher generation PAMAM.The salts rejection of the resulting membranes increased with increasing the generation number of PAMAM,which was mainly attributed to the concentration difference of terminal amino-groups among the different generation PAMAM.The MgCl2 (2000 mg/L) rejection of NF-G5 reached 90.3% under the pressure of 0.6 Mpa in a cross-flow method measurement.The rejection of MgCl2 increased with increasing concentration of PAMAM.The salts rejection order of NF membranes with high rejection is MgCl2>MgSO4>Na2SO4>NaCI.It was also found that the NF-Gx (x=4,5,6,7) membranes became more hydrophilic with increasing the generation number of PAMAM.  相似文献   

19.
Electrospun polyacrylonitrile (PAN) nanofibrous scaffold was used as a mid-layer support in a new kind of high flux thin film nanofibrous composite (TFNC) membranes for nanofiltration (NF) applications. The top barrier layer was produced by interfacial polymerization of polyamides containing different ratios of piperazine and bipiperidine. The filtration performance (i.e., permeate flux and rejection) of TFNC membranes based on electrospun PAN nanofibrous scaffold was compared with those of conventional thin film composite (TFC) membranes consisting of (1) a commercial PAN ultrafiltration (UF) support with the same barrier layer coating and (2) two kinds of commercial NF membranes (i.e., NF90 and NF270 from Dow Filmtec). The nanofiltration test was carried out by using a divalent salt solution (MgSO4, 2000 ppm) and a cross-flow filtration cell. The results indicated that TFNC membranes exhibited over 2.4 times more permeate flux than TFC membranes with the same chemical compositions, while maintaining the same rejection rate (ca. 98%). In addition, the permeate flux of hand-cast TFNC membranes was about 38% higher than commercial NF270 membrane with the similar rejection rate.  相似文献   

20.
To characterize solute transport in nanofiltration (NF) the Spiegler–Kedem equation requires that two coefficients be determined for two-component solutions (a solute in water), solute permeability ω and reflection coefficient σ. For salts both coefficients strongly and in a complex way depend on concentration, which greatly complicates their evaluation from experiments. For this reason, the parameters are usually assumed constant for a given feed and the concentration dependence is assessed from flux–rejection curves for several feeds. This procedure however ignores the fact that the solute concentration and hence the coefficients significantly vary across the membrane. One way to overcome this inconsistency and address concentration dependence is to use physical models explicitly introducing exclusion mechanism(s) and fitting relevant membrane-specific parameters, such as fixed charge or dielectric properties. This procedure often fails to produce unique values of parameters for a given membrane and different salts. In the present study a new phenomenological approach is proposed and critically analyzed, based on the assumption of a similar concentration dependence of ω and 1 − σ, previously shown to be valid under fairly general conditions, thereby the Peclét coefficient A = (1 − σ)/ω may be assumed to be independent of concentration. The coefficients and their concentration dependence for a given solute may be directly and consistently evaluated by fitting flux–rejection data for several feeds and fluxes to numeric solution of the modified transport equations without the need to invoke specific physical models. The values of transport parameters deduced in this way for representative membranes and salts allow important conclusions regarding the transport mechanism. In particular, the roles of different mechanisms in overall salt exclusion could be addressed directly from the variation of ω or 1 − σ with concentration. On the other hand, the value of the Peclét coefficient, free of the effect of salt partitioning, may be analyzed in terms of hindered transport. Using the proposed method, this value was found to be very small for studied thin-film composite membranes, which may significantly simplify the transport equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号