首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the stationary Josephson effect on YBa2Cu3O7−δ (Tc=90 K) and Bi2Sr2Ca1Cu2 O8 (Tc=80 K and 87 K for two samples of different origin) ceramic based junctions. The temperature dependence of the critical current near Tc has been found as Ic≈(Tc-T) for the Y-Ba-Cu-O samples indicating that they should be classified as S-N-I-N-S type junctions. The I-V curves of the Bi-Sr-Ca-Cu samples show the typical behaviour of S-I-S structures. Using Ambegaokar-Baratoff's theory for Bi2Sr2Ca1Cu2O8, the temperature dependence of the superconducting state gap Δ(T) was calculated and it was evaluated that 1.452Δ(0)/kBTc3.5.  相似文献   

2.
139La-NQR measurements have been carried out in the ternary carbide superconductor LaNiC2. The nuclear quadrupole frequency and the asymmetry parameter of 139La in LaNiC2 were estimated to be about 1.9 MHz and 0, respectively. In the normal state, the nuclear spin relaxation rate (1/T1) in the 139La NQR signal was proportional to temperature (T) in zero external field above the superconducting transition temperature (Tc) or in an external field larger than the superconducting critical field, which means the system is in the Fermi-liquid state. In the superconducting state, on the other hand, 1/T1 decreases no more linearly with T, but decreases rapidly exponentially as exp (−Δ/kBT) at low T with an appreciable enhancement just below Tc. The value of the superconducting energy gap, 2Δ, was estimated to be 3.34kBTc, compared with 3.52kBTc of the BCS-value. This result strongly suggests that the superconductivity in LaNiC2 is of a conventional BCS type.  相似文献   

3.
The thermal conductivity and thermopower are reported for a hole doped Eu1.5Ce0.5RuSr2Cu2O10+δ sample that has been annealed at 1100 K under an oxygen pressure of 54 atm. At Tc=45 K superconductivity and weak ferromagnetism coexist (Tm=180 K). Weak features in the thermopower, S(T), and thermal conductivity, κ(T), are observed both at Tm and at T*=140 K. The thermopower begins to decrease sharply toward zero at Tc, and there is an extremely sharp increase of about 30% in the thermal conductivity at Tc. This “first order” transition may be related to the sudden appearance of a spontaneous vortex phase at Tc. A small shoulder is observed in κ(T) in the temperature range T=5–13 K.  相似文献   

4.
Pr concentration dependence of the superconducting transition temperature Tc in the Ho1−xPrxBa2Cu3O7−δ system is determined from measurements of DC electrical resistance. This dependence coincides with that for the parallely studied Y1−xPrxBa2Cu3O7−δ reference system. Both systems have the same value of the critical concentration xc=0.58, in accordance with nearly equal ionic radii of Ho3+ and Y3+ ions. It has been shown that the Tc(x) curve can be described with a single mechanism based on a decreasing number of sheet holes trapped by PrIV-ions, if one takes also into account that the number of these ions changes with x.  相似文献   

5.
We have investigated the microwave response at 45 GHz in an organic superconductor λ-(BEDT-TSF)2GaCl4 with Tc = 4.8 K. We determine the μ0Hc2T phase diagram from microwave loss and find that the superconducting state is in the pure limit (l/ξGL  10). Although the real part of the complex conductivity (=σ1 + iσ2) does not show a coherence peak just below Tc, the London penetration depth completely saturates at low temperatures down to T/Tc = 0.2, which may provide an evidence for a conventional s-wave pairing. In the metallic state below about 50 K, (parallel to the c-axis) deviates downward from , while σ2, which should be zero in a conventional metal, increases exponentially toward Tc. In spite of the fact that the Hagen–Rubens limit is well satisfied as far as the dc conductivity is concerned, a Drude model is unable to explain the large positive σ2. In order to explain such anomalies in the metallic state, we propose a possible existence of so-called a pseudogap near a Fermi level. The anomalous increase of the positive σ2 may be attributed to an appearance of pre-formed electron pairs in the pseudogap state. This appearance can be regarded as a precursor to the superconducting transition. Such a precursory phenomenon has been observed also in the isostructural FeCl4 salt with the anomalous metallic states, which shows a negative σ2 in contrast to the GaCl4 salt. Just the opposite of ground states in between the GaCl4 and FeCl4 salts may result in the contrasting anomalous metallic states with different precursory phenomena with opposite signs of σ2.  相似文献   

6.
The thermoelectric power (TEP) S versus temperature has been systematically investigated for several series of the superconducting cuprates Tl(Ba,Sr)2Cam−1CumO2m+3−δ (m = 2, 3) and Tl2Ba2Cam−1CumO2m+4+δ (m = 1, 2, 3). The consideration of the S(Tc) curves allows two important points to be found evidence for. The first one deals with the fact that all these superconducting thallium cuprates are systematically overdoped whatever Tc, and whatever the number of Cu or Tl layers; no underdoped superconducting cuprate could be obtained. The second point shows that there exist two classes of Tl cuprates: the weakly overdoped cuprates that exhibit a Tc max ≥ 100 K (all the triple copper layer cuprates and the 2212 cuprates) and those which can be heavily doped that exhibit a Tc max ≤ 90 K (the 2201 and the 1212 cuprates). The different behavior of thallium cuprates compared to YBa2Cu3O7−δ and to bismuth cuprates is discussed.  相似文献   

7.
The temperature dependence of the upper critical fields, both perpendicular Hc2 and parallel Hc2 to layer planes of ferromagnet/superconductor bi- and multilayers, is theoretically investigated. The secular equation of the superconducting order parameter for determining the phase diagram (HT) is obtained by solving exactly the linearized Usadel equations in the multimode method taking into account the material parameter values. For the bilayers system, the influence of the boundary resistivity on the critical fields, and the dimensional crossover behavior of Hc2(T) are studied in details. For the multilayered structure, the effects of the π-phase state on both the superconducting transition temperature Tc and the upper critical fields (Hc2, and Hc2) are also considered. The nonmonotonic Tc behaviors are predicted. The interplay between 0- and π-phases leading to the strong oscillations of Tc as well as the temperature dependence of the zero temperature critical fields on the ferromagnetic layer thickness are investigated theoretically.  相似文献   

8.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

9.
Successful replacement of B by C in the series MgB2−xCx for values of x upto 0.3 is reported. Resistivity and ac susceptibility measurements have been carried out in the samples. Solubility of carbon, inferred from the observed change in the lattice parameter with carbon content indicates that carbon substitutes upto x=0.30 into the MgB2 lattice. The superconducting transition temperature, Tc measured both by zero resistivity and the onset of the diamagnetic signal shows a systematic decrease with increase in carbon content upto x=0.30, beyond which the volume fraction decreases drastically. The temperature dependence of resistivity in the normal state fits to the Bloch–Gruneisen formula for all the carbon compositions studied. The Debye temperature, θD, extracted from the fit, is seen to decrease with carbon content from 900 to 525 K, whereas the electron–phonon interaction parameter, λ, obtained from the McMillan equation using the measured Tc and θD, is seen to increase monotonically from 0.8 in MgB2 to 0.9 in the x=0.50 sample. The ratio of the resistivities between 300 and 40 K versus Tc is seen to follow the Testardi correlation for the C substituted samples. The decrease in Tc is argued to mainly arise due to large decrease in θD with C concentration and a decrease in the hole density of states at N(EF).  相似文献   

10.
MnAs0.88P0.12 has been studied by powder neutron diffraction in external magnetic fields up to 15.2 kOe and temperatures down to 4.2 K. MnAs0.88P0.12 takes the MnP type atomic arrangement and exists in para-, ferro- and different (essentially) helimagnetic states. The observation of a double 000± satellite at 4.2 K < T 70 K adds further evidence to the chain of arguments for distinction between the helimagnetic states H'a (4.2 K < T < TS,1 ≈ 70 K) and Ha (TS,2 ≈ 180 K < T < TN = (243 ± 5) K). External magnetic fields at 4.2 K < T < 70 K evoke a new magnetic state, which is also characterized by a satellite doublet, and is tentatively designated H'a,fan.  相似文献   

11.
Magnetization σ vs. temperature T was measured from 80 to 700 K in polycrystalline DyFe3 in a magnetic field H = 10 kOe. From σ = f(T), the Curie temperature was determined. Also, σ was measured vs. H from 0 to 70 kOe at 4.2 K. Magnetization at saturation σ0 at 4.2 K and the magnetic moment of DyFe3 were also determined. First observations of domain structure in DyFe3 are reported. The mean domain with is determined in its dependence on the grain size . The magnetocrystalline anisotropy constant of polycrystalline DyFe3 is determined as K1 = -1.2×107 erg/cm3.  相似文献   

12.
Isothermal low-field AC susceptibility measurements have been used to analyze the intergranular critical current density Jc(T) on sintered, non-oriented YBa2Cu3O7−δ and Bi2Sr2CaCu2O8+δ ceramic samples at zero field. Below the critical temperature, potential variations, Jc(T) ≈ (1−tj)m with tj = T/Tj, have been found, Tj being the onset of grain's coherence, but with different exponents, supporting that different mechanisms limit the intergranular Jc values. Moreover, the effect of texture has been also considered on Bi2Sr2CaCu2O8+δ ceramics grown by the laser floating zone method, which have stronger intergranular junctions. Their high-temperature behaviour is limited by intrinsic effects, while at low temperatures the quality of the junctions is the limiting factor. The temperature dependence of the χ′(h0) extrapolation at zero filed has also been correlated with the evolution of the intergranular penetration depth, λJ(T).  相似文献   

13.
The magnetic ordering in the tetragonal ternary compound U4Cu4P7 has been studied by neutron diffraction. It orders below TN = 146 K with an antiferromagnetic structure of wave vector k = (001). The magnetic ordering corresponds to a stacking of ferromagnetic (001) uranium planes according to the sequences m1, m1, m2, -m2, -m1, -m1, -m2, m2 where m1 and m2 represent the magnetic moment, directed along the tetragonal axis of the two uranium sites U(1) (0,0,± z1) and U(2) (0,0, ± z2) respectively. The magnetic moments on these two sites have different temperature dependencies as well as well as they reach the different values of 1.1 and 2.2.μB for the U(1) and U(2) sites, respectively.  相似文献   

14.
The annealing characteristics and the superconducting properties of Tl2Ca2Ba2Cu3O10 thin films sputter-deposited onto yttrium- stabilized ZrO2 substrate at up to 500°C from two stoichiometric oxide targets are reported. The films deposited at 400–500°C were found to require a lower post-annealing temperature than the films deposited at lower temperatures to attain the highest Tc superconducting state, due to a more pronounced Ba diffusion toward the substrate as indicated by their secondary ion mass spectrometry depth profiles. The highest Tc achieved tends to degrade with increasing substrate temperatures, a zero resistance Tc of 121 and ≈90 K, respectively, being observed for the films deposited at -ambient temperature and at 500°C. The formation of the highest Tc phase (Tl2Ca2Ba2Cu3O10) generally is associated with a sheet type of crystal growth morphology with smooth and aligned surfaces which can be obtained only from the films capable of sustaining prolonged annealing at 900°C. Annealing at lower temperatures (≈860°C) results in the formation of rod or sphere type of morphologies with rough and randomly oriented crystals and the lower Tc phases such as Tl2Ca1Ba2Cu2O8.  相似文献   

15.
To study a behavior of the thermal conductivity near Tc specific heat and thermal diffusivity of the YBa2Cu3O7−δ high-Tc ceramics were simultaneously measured. Close to Tc = 92.30 K the thermal diffusivity and the thermal conductivity discovered minima and the specific heat – maximum. Quantitative analysis of the influence of thermodynamical fluctuations showed the same power laws with Gaussian exponent equal to 0.5 and existing of crossover from the 3D Gaussian to 3D XY critical behavior in the specific heat and thermal conductivity at the approach to Tc. To explain the minimum in thermal conductivity at Tc we propose a mechanism of scattering of phonons on the superconducting fluctuations.  相似文献   

16.
We present here the detailed analysis of the magnetic behavior of the Co0.53Ga0.47 alloy, especially at temperatures above the freezing temperature Tf = 10 K. Low field static magnetization measurements were performed by using the SQUID magnetometer in the temperature range 5–65 K and magnetic fields up to 100 Oe. The temperature dependence of the field cooled susceptibility πFC(T) at T > Tf has an anomaly, which is displayed in the double change of the curvature near Ts = 24 K. The data of magnetization MFC in an external field H lie on a universal curve MFC(H/T) at temperatures Tf < T < Ts. The plots of π-1FC(T) and non-linear magnetic susceptibility πnlFC(T-3) are linear lines in the temperature range TfTs. The strong deviation of π-1FC(T) and πnlFC(T-3) from straight line, taking place at T Ts, indicates that Ts is an upper temperature limit of the classical superparamagnetic behavior with the constant cluster moment. The results suggest that such phenomena may be fairly universal for spin glasses.  相似文献   

17.
The effect of Cd doping on transport, magnetotransport, and magnetic properties has been investigated in the perovskite La1−xCdxMnO3 (0x0.5) systems. The ρ(T) curves exhibit a sharp metal insulator transition (Tp1), which is close to paramagnetic to ferromagnetic transition (Tc) obtained from MT curves for all samples. In addition, ρ(T) curves for Cd doped samples exhibit another broad transition (TP2) below Tp1. This transition becomes more prominent and the transition temperature (Tp2) shifts to lower temperature with increasing Cd content. Such double peak behavior in the ρ(T) curve is attributed to the phase separation between the ferromagnetic metallic phases and the ferromagnetic insulating phases induced by the electronic inhomogeneity in the samples.  相似文献   

18.
Samples of Bi2Sr2Ca1−xPrxCu2Oy have been characterized by resistivity and thermoelectric power measurements. All metallic samples show superconductivity with a maximum Tc = 90 K at X = 0.2. The sample of x = 0.6 shows a crossover from hopping conduction at low temperature above Tc to metallic conduction at high temperature. For the metallic samples below x = 0.6, the results of thermoelectric power are well fitted by both of a phenomenological band spectrum model and the Nagaosa and Lee model.  相似文献   

19.
The magnetization of single-crystal HoNi2B2C has been measured as a function of applied field (H) and temperature in order to probe the interplay between superconductivity and magnetism in this complex layered system. The normal-state magnetic susceptibility of HoNi2B2C is highly anisotropic with a Curie-Weiss-like temperature dependence for H applied perpendicular to the c-axis and with a much weaker temperature dependence for H applied parallel to the c-axis, indicating that the Ho+3 magnetic moments lie predominately in the tetragonal ab plane below 20 K. High-field magnetization (2000 Oe), low-field magnetization (20 Oe) and zero-field specific heat all give an antiferromagnetic ordering temperature of TN=5.0 K. Remarkably, in 20 Oe applied field both superconductivity (Tc=8.0 K) and antiferromagnetism (TN=5.0 K) clearly make themselves manifest in the magnetization data. From these magnetization data a phase diagram in the HT plane was constructed for both directions of applied field. This phase diagram shows a non-monotonic temperature dependence of Hc2 with a deep minimum at TN=5 K. The high-field magnetization data for H applied perpendicular to the c-axis also reveal a cascade of three phase transitions for T < 5 K and H < 15 000 Oe, contributing to the rich H versus T phase diagram for HoNi2B2C at low temperatures.  相似文献   

20.
Highly dense sintered YBa2Cu4O8 has been produced by hot isostatic pressing (HIP). The electrical resistivity of this material has been measured as a function of temperature T and pressure in the range 40–650 K and 0–0.7 GPa. Both the temperature dependence and the pressure dependence of are found to be well described by a model based on the standard Bloch-Grüneisen theory. It is pointed out that is liner in T only under isobaric conditions, while is strongly nonlinear in all high-Tc superconductors under isochoric (constant volume) conditions. The critical current density of the material is 900 A/cm2 at 4 K, while the resistivity is 630 μΩ cm at 294 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号