首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate coefficients for the reactions of cyclohexadienyl (c-C6H7) radicals with O2 and NO were measured at 296 ± 2 K. The c-C6H7 radicals were detected selectively by laser-induced fluorescence. The rate coefficient for the reaction of c-C6H7 with O2, (4.4 ± 0.5) × 10−14 cm3 molecule−1 s−1, was independent of the bath-gas (He) pressure (13–80 Torr). In the reaction of c-C6H7 with NO, thermal equilibrium among c-C6H7, NO, and C6H7NO was observed. The forward and reverse reactions were in the falloff region, and the equilibrium constant was (1.5 ± 0.6) × 10−15 cm3 molecule−1.  相似文献   

2.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

3.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

4.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

5.
UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm. σR = (2.6 ± 0.4) × 10−18 cm2 molecule−1 and σRO2 = (4.1 ± 0.6) × 10−18 cm2 molecule−1 (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 ± 1.1) × 10−11 cm3 molecule−1 s−1. The rate constants for reaction of the alkyl radicals with molecular oxygen and the alkylperoxy radicals with NO and NO2 are (9.1 ± 1.5) × 10−13, (4.3 ± 1.6) × 10−12 and (1.2 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule.  相似文献   

6.
The rate constants, k1 and k2 for the reactions of C2F5OC(O)H and n-C3F7OC(O)H with OH radicals were measured using an FT-IR technique at 253–328 K. k1 and k2 were determined as (9.24 ± 1.33) × 10−13 exp[−(1230 ± 40)/T] and (1.41 ± 0.26) × 10−12 exp[−(1260 ± 50)/T] cm3 molecule−1 s−1. The random errors reported are ±2 σ, and potential systematic errors of 10% could add to the k1 and k2. The atmospheric lifetimes of C2F5OC(O)H and n-C3F7OC(O)H with respect to reaction with OH radicals were estimated at 3.6 and 2.6 years, respectively.  相似文献   

7.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

8.
The reactive Kr+F2 potential energy surface is probed by two-photon, laser-induced chemical bond formation during a Kr+F2 collision. This is compared with the pulsed laser excitation (two-photon) of Kr(2p9) followed by collision with F2 leading to the formation of KrF(B, C). In addition to reporting the excitation spectrum for the two-phonon-induced collision process, these techniques were used to determine quenching rate constants of Kr2F*. Quenching by Xe gives XeF(B, C) with rate constant (1.5±0.2)×10−10 cm3 s−1; the quenching rate constant for F2 is (1.5±0.2)×10−10 cm3 s−1, and the radiative lifetime of Kr2F* is 240±35 ns. The quenching rate constant for the coupled Kr(2p8) and Kr(2p9) levels by F2 is (13±2)×10−10 cm3 s−1.  相似文献   

9.
This Letter reports the first kinetic study of 2-butoxy radicals to employ direct monitoring of the radical. The reactions of 2-butoxy with O2 and NO are investigated using laser-induced fluorescence (LIF). The Arrhenius expressions for the reactions of 2-butoxy with NO (k1) and O2 (k2) in the temperature range 223–311 K have been determined to be k1=(7.50±1.69)×10−12×exp((2.98±0.47) kJmol−1/RT) cm3 molecule−1 s−1 and k2=(1.33±0.43)×10−15×exp((5.48±0.69) kJmol−1/RT) cm3 molecule−1 s−1. No pressure dependence was found for the rate constants of the reaction of 2-butoxy with NO at 223 K between 50 and 175 Torr.  相似文献   

10.
The 183.038 nm resonance absorption transition of I(2P3/2) has been studied using a flash photolysis set-up for gas-phase chemistry and a radio frequency powered electrodeless discharge lamp filled with iodine. The dependence of self-absorption and self-reversal on iodine partial pressure in the discharge volume was measured. The optimum iodine partial pressure, with self-absorption minimized and acceptable intensity, is determined to be approximately 2.5×10−3 mbar. A method is described to estimate the temperature of the emitting atoms using direct measurements of relative absorption at different absorber concentrations. This yields an emission temperature of 923±50 K. Using this temperature, the oscillator strength for the I(2P3/2) transition at 183.038 nm is determined to be f=(3.87±0.57)×10−3, corresponding to an absorption cross-section at the center of the line of σ=(5.42±0.8)×10−14 cm2 atom−1. This shows a difference from one of two earlier measurements, but is close to the other. The remaining difference from the latter measurement is probably due to tendencies of opposite biases inherent to the experiments.  相似文献   

11.
The kinetics of the association reaction of CF3 with NO was studied as a function of temperature near the low-pressure limit, using pulsed laser photolysis and time-resolved mass spectrometry. CF3 radicals were generated by photolysis of CF3I at 248 nm and the kinetics was determined by monitoring the time-resolved formation of CF3NO. The bimolecular rate constants were measured from 0.5 to 12 Torr, using nitrogen as the buffer gas. The results are in very good agreement with recent data published by Vakhtin and Petrov, obtained at room temperature in a higher pressure range and, therefore, the two studies are quite complementary. A RRKM model was developed for fitting all the data, including those of Vakhtin and Petrov and for extrapolating the experimental results to the low- and high-pressure limits. The rate expressions obtained are the following: k1(0) = (3.2 ± 0.8) × 10−29 (T/298)−(3.4±0.6) cm6 molecule−2 s−1 for nitrogen used as the bath gas and k1(∞) = (2.0 ± 0.4) × 10−11 (T/298)(0±1) cm3 molecule−1 s−1. RRKM calculations also help to understand the differences in reactivity between CF3 and other radicals, for the same association reaction with NO.  相似文献   

12.
The three-photon absorption effect (3PA) of two novel symmetrical charge transfer fluorene-based molecules (abbreviated as BASF and BMOSF) has been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 84 × 10−78 and 114 × 10−78 cm6 s2, respectively. The geometries and electronic excitations of these two molecules are systematically studied by PM3 and ZINDO/S methods. The relationships between 3PA cross-sections and intramolecular charge transfer are discussed micromechanically. The experimental and theoretical results have shown that the larger intramolecular charge transfer, which was characterized by the charge density difference between the ground state (S0) and the first excited state (S1), the greater enhancement of the 3PA cross-sections.  相似文献   

13.
Pentaerythrityl tetraethylenediamine (PETEDA) dendrimer was synthesized from pentaerythrityl tetrabromide and ethylenediamine. Its molecular structure was characterized by elemental analysis, Fourier transform infrared resonance (FT-IR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. The composite membranes for selectively permeating CO2 were prepared by using PETEDA-PVA blend polymer as the active layer and polyethersulfone (PES) ultrafiltration membrane as the support layer and their permselectivity was tested by pure CO2 and CH4 gases and the gas mixture containing 10 vol.% CO2 and 90 vol.% CH4, respectively. For pure gases, the membrane containing 78.6 wt% PETEDA and 21.4 wt% PVA in the blend has a CO2 permeance of 8.14 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 and CO2/CH4 selectivity of 52 at 143.5 cmHg feed gas pressure. While feed gas pressure is 991.2 cmHg, CO2 permeance reaches 3.56 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 and CO2/CH4 selectivity is 19. For the gas mixture, the membrane has a CO2 permeance of 6.94 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 with a CO2/CH4 selectivity of 33 at 188.5 cmHg feed gas pressure, and a CO2 permeance of 3.29 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 with a CO2/CH4 selectivity of 7.5 at a higher feed gas pressure of 1164 cmHg. A possible gas transport mechanism in the composite membranes is proposed by investigating the permeating behavior of pure gases and the gas mixture and analyzing possible reactions between CO2/CH4 gases and the PETEDA-PVA blend polymer. The effect of PETEDA content in the blend polymer on permselectivity of the composite membranes was investigated, presenting that CO2 permeance and CO2/CH4 selectivity increase and CH4 permeance decreases, respectively with PETEDA content. This is explained by that with increasing PETEDA content, the carrier content increases, and the crystallinity and free volume of the PETEDA-PVA blend decrease that were confirmed by the experimental results of X-ray diffraction spectra (XRD) and positron annihilation lifetime spectroscopy (PALS).  相似文献   

14.
The cross section for the quenching of NH(c 1Π, ν = 0) by HN3 was measured by using a pulsed laser technique. A single rotational level of NH(c 1Π, ν = 0) was formed by exciting NH(a 1Δ, ν = 0) with a frequency doubled dye laser. NH(a1Δ) was produced by photolyzing HN3 with a XeCl excimer laser. The time profiles of the NH(c-a) fluorescence were measured at various pressures of HN3. Experiments were performed both in the presence and in the absence of He buffer gas. In the absence of He, the NH radicals were found to be translationally hot; the average velocity was 3800±600 m s−1. The quenching cross sections for the translationally hot and thermalized NH(c) radicals by HN3 were determined to be (28±5) × 10−16 and (85±3) × 10−16 cm2, respectively. No rotational level dependence could be observed in the quenching of the hot NH(c) radicals.  相似文献   

15.
We have applied cavity ring-down spectroscopy to a kinetic study of the reaction of NO3 with CH2I2 in 25–100 Torr of N2 diluent at 298 K. The rate constant of reaction of NO3 + CH2I2 is determined to be (4.0 ± 1.2) × 10−13 cm3 molecule−1 s−1 in 100 Torr of N2 diluent at 298 K. The rate constant increases with increasing pressure of buffer gas below 100 Torr. The reaction of CH2I2 with NO3 has the potential importance at nighttime in the atmosphere.  相似文献   

16.
The rate coefficients for the reactions of C2H and C2D with O2 have been measured in the temperature range 295 K T 700 K. Both reactions show a slightly negative temperature dependence in this temperature range, with kC2H+O2 = (3.15 ± 0.04) × 10−11 (T/295 K)−(0.16 ± 0.02) cm3 molecule−1 s−1. The kinetic isotope effect is kC2H/kC2D = 1.04 ± 0.03 and is constant with temperature to within experimental error. The temperature dependence and the C2H + O2 kinetic isotope effect are consistent with a capture-limited metathesis reaction, and suggest that formation of the initial HCCOO adduct is rate-limiting.  相似文献   

17.
A series of hydroxyl-conducting anion-exchange membranes were prepared by blending chloroacetylated poly(2,6-dimethyl-1,4-phenylene oxide) (CPPO) with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO), and their fuel cell-related performances were evaluated. The resulting membranes exhibited high hydroxyl conductivities (0.022–0.032 S cm−1 at 25 °C) and low methanol permeability (1.35 × 10−7 to 1.46 × 10−7 cm2 s−1). All the blend membranes proved to be miscible or partially miscible under the investigations of scanning electron microscopy (SEM) and differential scanning calorimeters (DSC). By condition optimization, the blend membranes with 30–40 wt% CPPO are recommended for application in direct methanol alkaline fuel cells because they showed low methanol permeability, excellent mechanical properties and comparatively high hydroxyl conductivity.  相似文献   

18.
The state-selected reaction of CH(X2Πν″ = 0, 1) with H2 has been studied, in which CH was generated by IRMPD of a precursor gas, CH3OH. The subsequent evolution of CH (ν″ = 0, 1) was monitored by the sensitive LIF technique. For the ground state and vibrationally excited state CH, the reaction with H2 is found to depend on the total pressure in the sample cell at room temperature, which suggests that the reaction proceeds through an intermediate adduct, CH3. The backward dissociation process is found to depend on the buffer pressure, which can be rationalized via a collision-induced backward dissociation. The decay rates of CH (ν″ = 0, 1) due to collisions with H2 and Ar at a buffer pressure of 10 Torr are kH2 (ν″ = 1) = (2.3±0.1) × 10−1 cm3 molecule−1 s−1 and kAr (ν″ = 1) = (4.4±0.1) × 10−13 cm3 molecule−1 s−1. Possible effects of the vibrational excitation on the reaction rate of CH (ν″ = 1) are discussed.  相似文献   

19.
The singlet exciton quenchings due to SS and ST interactions in crystalline anthracene have been separated by considering the kinetics of the two interactions. The corresponding rate constants are γSS = (1 ± 0.5) × 10−8 and γST = (f ± 3) × 10−9 cm3 sec−1.  相似文献   

20.
The ionization and dissociative ionization of NF3 by electron impact has been measured by Fourier transform mass spectrometry (FTMS). The total ionization cross-section rises to a maximum value of 2.4±0.4×10−16 cm2 at 140 eV. Estimates of the total single ionization cross-section using ab initio energies with the binary encounter Bethe (BEB) [Y.K. Kim, M.E. Rudd, Phys. Rev. A 50 (1994) 3594] or Deutsch–Märk [Int. J. Mass Spec. 197 (2000) 37] models are roughly twice the measured values. The partial cross-sections creating NFx+ (x=0, 1, 2, 3), F+, and NFx2+ (x=1, 2, 3) are reported. Differences between the FTMS results and quadrupole data and fast atom beam results of Tarnovsky et al. [Int. J. Mass Spectrom. Ion Processes 133 (1994) 175] are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号