首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Potential energy surfaces, minimum energy reaction paths, minima, transition states, reaction barriers, and conical intersections for the most important atmospheric reactions of methyl nitrate (CH(3)ONO(2)) and methylperoxy nitrite (C(3)HOONO) on the electronic ground state have been studied (i) with the second-order multiconfigurational perturbation theory (CASPT2) by computation of numerical energy gradients for stationary points and (ii) with the density functional theory (DFT). The proposed mechanism explains the conversion of unreactive alkyl peroxy radicals into alkoxy radicals: CH(3)O(2) + NO <=> CH(3)OONO <=> CH(3)O + NO(2) left arrow over right arrow CH(3)ONO(2). Additionally, several discrepancies found in the comparison of the results obtained from the two employed approaches are analyzed. CASPT2 predicts that all dissociation reactions into radicals occur without an extra exit energy barrier. In contrast, DFT finds transition states for the dissociations of cis- and trans-methylperoxy nitrite into CH(3)O + NO(2). Furthermore, multiconfigurational methods [CASPT2 and complete active space SCF (CAS-SCF)] predict the isomerization of CH3ONO2 to CH3OONO to occur in a two-step mechanism: (i) CH(3)ONO(2) --> CH(3)O + NO(2); and (ii) CH(3)O + NO(2) --> CH(3)OONO. The reason for this has to do with the coupling of the ground electronic state with the first excited state. Therefore, it is demonstrated that DFT methods based on single determinantal wave functions give an incorrect picture of the aforementioned reaction mechanisms.  相似文献   

2.
The electronic structure of azulene molecule has been studied. We have obtained the optimized structures of ground and singlet excited states by using the complete active space self-consistent-field (CASSCF) method, and calculated vertical and 0-0 transition energies between the ground and excited states with second-order M?ller-Plesset perturbation theory (CASPT2). The CASPT2 calculations indicate that the bond-equalized C(2v) structure is more stable than the bond-alternating C(s) structure in the ground state. For a physical understanding of electronic structure change from C(2v) to C(s), we have performed the CASSCF calculations of Duschinsky matrix describing mixing of the b(2) vibrational mode between the ground (1A(1)) and the first excited (1B(2)) states based on the Kekule-crossing model. The CASPT2 0-0 transition energies are in fairly good agreement with experimental results within 0.1-0.3 eV. The CASSCF oscillator strengths between the ground and excited states are calculated and compared with experimental data. Furthermore, we have calculated the CASPT2 dipole moments of ground and excited states, which show good agreement with experimental values.  相似文献   

3.
4.
We report a series of quantum-chemical calculations for the ground and some of the low-lying excited states of an isolated LiYb molecule by the spin-orbit multistate complete active space second-order perturbation theory (SO-MS-CASPT2). Potential energy curves, spectroscopic constants, and transition dipole moments (TDMs) at both spin-free and spin-orbit levels are obtained. Large spin-orbit effects especially in the TDMs of the molecular states dissociating to Yb((3)P(0,1,2)) excited states are found. To ensure the reliability of our calculations, we test five types of incremental basis sets and study their effect on the equilibrium distance and dissociation energy of the ground state. We also compare CASPT2 and CCSD(T) results for the ground state spectroscopic constants at the spin-free relativistic level. The discrepancies between the CASPT2 and CCSD(T) results are only 0.01 ? in equilibrium bond distance (R(e)) and 200 cm(-1) in dissociation energy (D(e)). Our CASPT2 calculation in the supermolecular state (R=100 a.u.) with the largest basis set reproduces experimental atomic excitation energies within 3% error. Transition dipole moments of the super molecular state (R=100 a.u.) dissociating to Li((2)P) excited states are quite close to experimental atomic TDMs as compared to the Yb((3)P) and Yb((1)P) excited states. The information obtained from this work would be useful for ultracold photoassociation experiments on LiYb.  相似文献   

5.
采用CASSCF方法和ANO-S基组计算了FONO2分子及其阳离子的低能激发态, 并采用CASPT2方法进行能量校正. 预测了在低能激发态时FONO2分子的几何结构发生了很大变化, 从基态的平面构型转变为空间的几何构型. 然而在阳离子中没有发生相似的几何构型改变. 此外, 在分子的基态几何构型下, 设计并计算了相应阳离子的垂直离子势, 对分子的光电子谱给出了详细的解释.  相似文献   

6.
使用CASSCF方法和ANO-L基组优化了HSO自由基的基态和3个低占据激发态的结构, 并采用包括更多电子动态相关能的CASPT2方法进行了单点能校正. 频率计算结果表明, 优化的4个几何为势能面上的稳定点. 通过电子结构的研究合理地解释了各个激发态相对于电子基态的结构变化.  相似文献   

7.
We show that the ab initio CASPT2//CASSCF strategy previously used to investigate the ground and excited states of the chromophore of the vision receptor rhodopsin (Rh) in vacuo can be successfully implemented in a QM/MM scheme allowing for CASPT2//CASSCF/AMBER geometry optimization and excited state property evaluation in proteins. Two receptor models (Rh-1 and Rh-2) incorporating different reduced chromophores are investigated. It is shown that Rh-2 features a chromophore equilibrium structure with the correct helicity and a lambdamax that is only 52 nm blue-shifted from the observed value. This result should open the way to a qualitatively correct ab initio QM/MM modeling of the early excited state transient species involved in the vision process.  相似文献   

8.
Manganese(V)-oxo corrole and corrolazine have been studied with ab initio multiconfiguration reference methods (CASPT2 and RASPT2) and large atomic natural orbital (ANO) basis sets. The calculations confirm the expected singlet d(δ)(2) ground states for both complexes and rule out excited states within 0.5 eV of the ground states. The lowest excited states are a pair of Mn(V) triplet states with d(δ)(1)d(π)(1) configurations 0.5-0.75 eV above the ground state. Manganese(IV)-oxo macrocycle radical states are much higher in energy, ≥1.0 eV relative to the ground state. The macrocyclic ligands in the ground states of the complexes are thus unambiguously 'innocent'. The approximate similarity of the spin state energetics of the corrole and corrolazine complexes suggests that the latter macrocycle on its own does not afford any special stabilization for the Mn(V)O center. The remarkable stability of an Mn(V)O octaarylcorrolazine thus appears to be ascribable to the steric protection afforded by the β-aryl groups.  相似文献   

9.
采用CASSCF方法和6-311++(3df, 3pd)基组以及Cs对称性优化了乙基硫自由基和阳、阴离子3种分子的12个电子态的几何构型. 利用二级微扰方法(CASPT2)对这12个电子态做了单点能校正. 通过比较自由基与阴阳离子的能量, 得出了绝热电子亲和势和绝热电子电离能, 与实验结果在允许误差范围内基本一致.  相似文献   

10.
The complete active space self-consistent field (CASSCF) method and multiconfigurational second-order perturbation theory (CASPT2) have been used to study the structures and spectra of oxyluciferins (OxyLH2). The ground and lowest-lying singlet excited states geometries have been optimized using CASSCF. CASPT2 has been used to predict relaxed emission energies. The focus is on the lowest-lying singlet excited states of the anionic keto and enol forms of OxyLH2(-1) at the optimized excited-state geometries. The planar keto and enol forms of OxyLH2(-1) are minima on both the S0 and the S1 potential energy surfaces. The twisted keto and enol forms of OxyLH2(-1) are transition states on the S0 and S1 potential energy surfaces. The S1 --> S0 fluorescence emission energies are in the range of 54.2-58.4 kcal/mol for the anionic planar keto forms of OxyLH2, and in the range of 55.7-63.2 kcal/mol for the anionic enol forms of OxyLH2. S0 and S1 potential energy surfaces and thus are not implicated in the emission spectra in the gas phase.  相似文献   

11.
Trigonal-planar, middle transition metal diiminato-imido complexes do not exhibit high-spin states, as might be naively expected on the basis of their low coordination numbers. Instead, the known Fe(III), Co(III), and Ni(III) complexes exhibit S = 3/2, S = 0, and S = 1/2 ground states, respectively. Kohn-Sham DFT calculations have provided a basic molecular orbital picture of these compounds as well as a qualitative rationale for the observed spin states. Reported herein are ab initio multiconfiguration second-order perturbation theory (CASPT2) calculations, which provide a relatively detailed picture of the d-d excited-state manifolds of these complexes. Thus, for a C(2v) Fe(III)(diiminato)(NPh) model complex, two near-degenerate states ((4)B(2) and (4)B(1)) compete as contenders for the ground state. Moreover, the high-spin sextet, two additional quartets and even a low-spin doublet all occur at <0.5 eV, relative to the ground state. For the Co(III) system, although CASPT2 reproduces an S = 0 ground state, as observed experimentally for a related complex, the calculations also predict two exceedingly low-energy triplet states; there are, however, no other particularly low-energy d-d excited states. In contrast to the Fe(III) and Co(III) cases, the Ni(III) complex has a clearly nondegenerate (2)B(2) ground state. The CASPT2 energetics provide benchmarks against which we can evaluate the performance of several common DFT methods. Although none of the functionals examined perform entirely satisfactorily, the B3LYP hybrid functional provides the best overall spin-state energetics.  相似文献   

12.
The 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) electronic states of the SO(2) (+) ion have been studied using multiconfiguration second-order perturbation theory (CASPT2) and two contracted atomic natural orbital basis sets, S[6s4p3d1f]/O[5s3p2d1f] (ANO-L) and S[4s3p2d]/O[3s2p1d] (ANO-S), and the three states were considered to correspond to the observed X, B, and A states, respectively, in the previous experimental and theoretical studies. Based on the CASPT2/ANO-L adiabatic excitation energy calculations, the X, A, and B states of SO(2) (+) are assigned to 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2), respectively, and our assignments of the A and B states are contrary to the previous assignments (A to (2)A(2) and B to (2)B(2)). The CASPT2/ANO-L energetic calculations also indicate that the 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) states are, respectively, the ground, first excited, and second excited states at the ground-state (1 (2)A(1)) geometry of the ion and at the geometry of the ground-state SO(2) molecule. Based on the CASPT2/ANO-L results for the geometries, we realize that the experimental geometries (determined by assuming the bond lengths to be the same as the neutral ground state of SO(2)) were not accurate. The CASPT2/ANO-S calculations for the potential energy curves as functions of the OSO angle confirm that the 1 (2)B(2) and 1 (2)A(2) states are the results of the Renner-Teller effect in the degenerate (2)Pi(g) state at the linear geometry, and it is clearly shown that the 1 (2)B(2) curve, as the lower component of the Renner splitting, lies below the 1 (2)A(2) curve. The UB3LYP/cc-pVTZ adiabatic excitation energy calculations support the assignments (A to (2)B(2) and B to (2)A(2)) based on the CASPT2/ANO-L calculations.  相似文献   

13.
Calculations using the complete active space self-consistent field (CASSCF) and complete active space second-order perturbation (CASPT2) methods, and the multistate formulation of CASPT2 (MS-CASPT2), are performed for the ground and excited states of radical anions consisting of two pi-stacked nucleobases. The electronic couplings for excess electron transfer (EET) in the pi-stacks are estimated by using the generalized Mulliken-Hush approach. We compare results obtained within the different methods with data derived using Koopmans' theorem approximation at the Hartree-Fock level. The results suggest that although the one-electron scheme cannot be applied to calculate electron affinities of nucleobases, it provides reasonable estimates for EET energies. The electronic couplings calculated with KTA lie between the CASPT2 and the MS-CASPT2 based values in almost all cases.  相似文献   

14.
In this work we analyze how the choice of the active space in the CASSCF (the complete-active-space multiconfiguration self-consistent-field method) and CASPT2 (the second-order perturbation theory based on the CASSCF reference wave function) calculations affects the computed potential energy curves (PECs) for the intramolecular proton transfer reaction in the ground state and the two lowest lying singlet excited states of 1-amino-3-propenal. As anticipated, the results revealed that, qualitatively, the proton transfer in the different states can be correctly described even by minimal active spaces, which include the orbitals involved in the electronic excitation of the considered state and the antibonding sigma orbital corresponding to the bond formed by the molecule with the migrating hydrogen atom. However, quantitatively, the relative energies of the two tautomers and the energy barriers computed at the CASSCF level change when the active space is increased, indicating importance of the dynamic electron correlation. Introducing the dynamic correlation effects via CASPT2 makes the calculated energy parameters more uniform among the different active spaces. The analysis suggested certain optimal active spaces for studying proton transfer reactions in systems similar to 1-amino-3-propenal. The PEC calculations for excited states showed that the results are sensitive to the molecular geometries used in the calculations, particularly near the transition point. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1422–1431 (1999)  相似文献   

15.
The ground state and the excited states of benzene, pyrimidine, and pyrazine have been examined by using the symmetry adapted cluster-configuration interaction (SAC-CI) method. Detailed characterizations and the structures of the absorption peaks in the vacuum ultraviolet (VUV), low energy electron impact (LEEI), and electron energy loss (EEL) spectra were theoretically clarified by calculating the excitation energy and the oscillator strength for each excited state. We show that SAC-CI has the power to well reproduce the electronic excitation spectra (VUV, LEEI, and EEL) simultaneously to an accuracy for both the singlet and the triplet excited states originated from the low-lying pi --> pi*, n --> pi*, pi --> sigma* and n --> sigma* excited states of the titled compounds. The present results are compared with those of the previous theoretical studies by methods, such as EOM-CCSD(T), STEOM-CCSD, CASPT2 and TD-B3LYP, etc.  相似文献   

16.
The HBO+ and HOB+ cations have been reinvestigated using the CASSCF and CASPT2 methods in conjunction with the contracted atomic natural orbital (ANO) basis sets. The geometries of all stationary points in the potential energy surfaces were optimized at the CASSCF/ANO and CASPT2/ANO levels. The ground and the first excited states of HBO+ are predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HOB+ is X2Σ+ state. The A2Π state of HOB+ has unique imaginary frequency. A bending local minimum M1 was found for the first time along the 12A′′ potential energy surface and the A2Π state of HOB+ should be the transition state of the isomerization reactions for M1? M1. The CASPT2/ANO potential energy curves (PECs) of isomerization reactions were calculated as functions of the HBO bond angle. Many of the CASSCF and CASPT2 calculated results were different from the previously published QCISD(T) results. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
The semiempirical valence bond (VB) method, VBDFT(s), is applied to the ground states and the covalent excited states of polyenyl radicals C2n - 1H2n + 1 (n = 2-13). The method uses a single scalable parameter with a value that carries over from the study of the covalent excited states of polyenes (W. Wu, D. Danovich, A. Shurki, S. Shaik, J. Phys. Chem. A, 2000, 104, 8744). Whenever comparison is possible, the VB excitation energies are found to be in good accord with sophisticated molecular orbital (MO)-based methods like CASPT2. The symmetry-adapted Rumer structures are used to discuss the state-symmetry and VB constitution of the ground and excited states, and the expansion to VB determinants is used to gain insight on spin density patterns. The theory helps to understand in a coherent and lucid manner the properties of polyenyl radicals, such as the makeup of the various states, their geometries and energies, and the distribution of the unpaired electrons (the neutral solitons).  相似文献   

18.
The character of the hydrogen bonding and the excited state proton transfer (ESPT) in the model system HCN...H(2)O is investigated. The PES of the two lowest excited states of the H(2)O...HCN complex was calculated using the CASPT2 method. The nonadiabatic coupling of the two states of the (pi-->pi*) and (pi-->sigma*) character is responsible for the excited state proton/hydrogen transfer. Compared to the ground state, the barrier for this process is significantly smaller. An increased number of water molecules in the complex with cyclic hydrogen-bonded network causes a large blue shift of the state of the (pi-->sigma*) character. The question of the dissociation of the complex in its excited state is also addressed.  相似文献   

19.
The HMgO and magnesium monohydroxide (HOMg) have been reinvestigated using the complete active space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods with the contracted atomic natural orbital (ANO) basis sets. The geometries of all stationary points along the potential energy surfaces (PESs) were optimized at the CASSCF/ANO levels. The ground and the first excited states of HMgO are predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HOMg is X2Σ+ state. The A2Π state of HOMg has unique imaginary frequency. A bent local minimum M1 was found for the first time along the 12A″ PES and the A2Π state of HOMg should be the transition state of the isomerization reactions for M1 ? M1. The CASPT2/ANO potential energy curves of isomerization reactions were calculated as a function of HMgO bond angle. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
In this study, some low‐lying states of the HBN and HNB radicals have been studied using multiconfiguration second‐order perturbation theory. The geometries of all stationary points along the potential energy surfaces (PESs) were optimized at the CASPT2/cc‐pVQZ level. The ground and the first excited states of HBN were predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HNB is X2Σ+ state. The A2Π state of HNB has unique imaginary frequency, which was different from the previously published results. A bending local minimum M1 was found for the first time along the 12A″ PES, and the A2Π state of HNB should be the transition state of the isomerization reactions for M1 ? M1. The CASPT2/ANO potential energy curves (PECs) of isomerization reactions for HBN ? HNB were calculated as a function of HBN bond angle. By comparing the CASPT2 and CASSCF calculated results, we concluded that the influence of the dynamic electron correlation on HBN ? HNB system is not large. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号