首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It was found for the first time that the selectivity of toluene transformations into benzaldehyde and benzoic acid decreased and into maleic anhydride and deep oxidation products increased as the ability of vanadium-containing catalysts of toluene oxidation to generate the singlet form of molecular oxygen grew. A scheme of the formation of the products of toluene oxidation with oxygen was suggested. Quinones were shown to be final rather than intermediate oxidation products. The selectivity of the reaction with respect to mild oxidation products in the presence of V2O5, MoO3, and V2O5 · MoO3 could be increased by changing the temperature of catalyst preparation from 400 to 500°C.  相似文献   

2.
The heterogeneous oxidation of toluene in aqueous medium has been investigated. Artificially contaminated water with aromatic compound (toluene) was exposed to a simple platinized zirconia (1% Pt/ZrO2) catalyst in the presence of molecular oxygen. This selective oxidation of toluene to benzyl alcohol, benzaldehyde and benzoic acid provides a step for removing toluene from wastewater or converting it into less harmful substances. Different parameters, e.g. the reaction time, temperature, pressure, the amount of catalyst and agitation, etc influenced the toluene conversion and selectivity. Typical batch reactor kinetic data were obtained and fitted to the classical Langmuir‐Hinshelwood model, Mars‐van Krevelen model as well as to the Eley‐Rideal model of heterogeneously catalyzed reactions. The Eley‐Rideal model was found to give a better fit. 1% Pt/ZrO2 was observed to be the most active for oxidation of toluene at 333 K in oxygenated atmosphere [p(O2) ca. 101 kPa] with a nominal stirring speed ≧900 r/min. It was found that catalytic oxidation may be an effective method for the removal of volatile organic compounds from aqueous solutions and comparable to other advanced oxidation processes.  相似文献   

3.
It is shown for toluene oxidation with nitrous oxide that modifying HZSM-5 zeolite with zinc oxide nanoparticles considerably improves the selectivity and yield of cresols. It is found that a 2% ZnO/HZSM-5 composite catalyst also exhibits enhanced and stable activity at high temperatures. For the o-cresol isomerization reaction, this modification of HZSM-5 zeolite greatly reduces the contribution from disproportionation and cracking reactions proceeding with formation of phenol, C6–C9 aromatic hydrocarbons, and xylenols. The regularities of their formation in the presence of the studied catalysts are determined using the results from thermodynamic calculations for the equilibrium concentrations of cresol isomers.  相似文献   

4.
Fe-FSM-16 and Fe-containing mesoporous materials (Fe-JLU-15) prepared by using semifluorinated surfactant as a template, have been synthesized by microwave-hydrothermal (M-H) process and characterized by several spectroscopic techniques. The catalytic activity of these materials was tested for the phenol hydroxylation and wet phenol oxidation with H2O2 under mild reaction conditions. The effect of pH, H2O2/PhOH molar ratio and stability of the catalyst on the oxidation process was also investigated. Phenol oxidation and H2O2 decomposition show that the Fe-JLU-15 is more active than Fe-FSM-16 and more stable in aqueous solution. The total amount of dissolved iron is less than 5 wt% of the iron initially contained in the catalyst. In phenol hydroxylation, these two solids can effectively catalyze the phenol hydroxylation. Catechol and hydroquinone were observed as the major products, with a difference in the product distribution for these solids. The Fe-JLU-15 has a high selectivity for catechol (63.5 % phenol conversion, CAT/HQ = 2.7) while the Fe-FSM-16 shows a high selectivity for hydroquinone (56.8 % phenol conversion, CAT/HQ < 1) under the same reaction conditions.  相似文献   

5.
A direct synthetic method of cresols from toluene by hydroxylation with air using CO as a reducing agent was developed. The reaction of toluene with air (15 atm) and CO (5 atm) in the presence of catalytic amounts of H4PMo11VO40·31H2O and Pd/C in aqueous acetic acid at 120 °C for 2 h afforded a mixture of o-, m-, and p-cresols in 9.9% yield at 83% selectivity. Cresols were obtained in 19% yield by recharging air and CO under these conditions. A variety of substituted benzenes were hydroxylated by this method to give the corresponding phenol derivatives in higher selectivity.  相似文献   

6.
This paper presents a new type of ozone-assisted catalysis for toluene decomposition. The different catalytic activities of ZSM-5 and Ag/ZSM-5 were incorporated into a layered catalyst with a tandem configuration. Instead of increasing the amount of metal catalyst, the layered catalyst was formed, which had an equal amount of bare ZSM-5 and Ag/ZSM-5 and could achieve both high toluene conversion and CO2 selectivity concurrently. The properties of each catalyst were evaluated with respect to toluene conversion, formation of intermediates, CO2 selectivity and ozone demand factor. The bare ZSM-5 exhibited higher toluene conversion than the Ag/ZSM-5, while its activity toward deep oxidation was limited. However, the Ag/ZSM-5 was found to be effective for the deep oxidation of reaction intermediates (HCOOH and CO). Separate oxidation tests with HCOOH and CO revealed that the ZSM-5-supported Ag nanoparticles could oxidize the HCOOH and CO in the absence of ozone, which was not possible with the bare ZSM-5. Plausible pathways for the oxidation of toluene with O3 over ZSM-5 and Ag/ZSM-5 were proposed based on the experimental evidence.  相似文献   

7.
The introduction of ferroelectric and catalytically active materials into the discharge zone of NTP reactors is a promising way to improve their performance for the removal of hazardous substances, especially those appearing in low concentrations. In this study, several coaxial barrier-discharge plasma reactors varying in size and barrier material (glass, Al2 O3, and TiO2) were used. The oxidation of methyl tert-butyl ether (MTBE), toluene and acetone was studied in a gas-phase plasma and in various packed-bed reactors (filled with ferroelectric and catalytically active materials). In the ferroelectric packed-bed reactors, better energy efficiency and CO2 selectivity were found for the oxidation of the model substances. Studies on the oxidation of a toluene/acetone mixture in air showed an enhanced oxidation of the less reactive acetone related to toluene in the ferroelectric packed-bed reactors. It can be concluded that the change of the electrical discharge behaviour was caused by a larger number of non-selective and highly reactive plasma species formed within the ferroelectric bed. When combining ferroelectric (BaTiO3) and catalytically active materials (LaCoO3), only a layered implementation led to synergistic effects utilising both highly energetic species formed in the ferroelectric packed-bed and the potential for total oxidation provided by the catalytically active material in the second part of the packed bed.  相似文献   

8.
The effects of reaction conditions and concentration of the heteropoly acid H4PMo11VO40 supported onto ShAS-2 bead aluminosilicate on the conversion of toluene into benzoic acid in the partial oxidation of toluene by atmospheric oxygen were studied. The results demonstrated that the conversion of toluene was an extremal function of temperature, space velocity (v), and toluene concentration (C 0) in the initial air mixture. An increase in the heteropoly acid concentration from 2 to 30% increased the conversion of toluene into benzoic acid in the partial oxidation of toluene from 1.5 to 12.6% at optimum process parameters: T = 300°C, v = 2000 h-1, and C 0 = 13.72 g/m3.  相似文献   

9.
Reaction between CuCl2 and (Z)-2-(1-(2-(1H-benzo[d]imidazol-2-yl)ethylimino)ethyl)phenol (Hhap-aebmz) derived from o-hydroxyacetophenone (Hhap) and 2-aminoethylbenzimidazole (aebmz) gives [CuII(hap-aebmz)Cl]. Elemental analysis, magnetic susceptibility, spectral (IR and electronic) data, and single crystal X-ray studies confirm the distorted square planar structure of the complex. [CuII(hap-aebmz)Cl] has been encapsulated in the nano-cavity of zeolite-Y and its encapsulation is ensured by various physico-chemical techniques. The encapsulated complex has been used as a catalyst for oxidation of cyclohexene and phenol in the presence of H2O2. With nearly quantitative oxidation of cyclohexene, the selectivity of the oxidation products follows the order, 2-cyclohexene-1-ol (44%)?>?2-cyclohexene-1-one (40%)?>?cyclohexeneoxide (12%)?>?cyclohexane-1,2-diol (4%). Oxidation of phenol (65.7%) gives catechol (66.1%)?>?hydroquinone (32.9%).  相似文献   

10.
MnxOy/SBA-15 catalysts were prepared via the impregnation method and utilized for toluene removal in dielectric barrier discharge plasma at atmospheric pressure and room temperature. The catalysts were characterized by X-ray diffraction, N2 adsorption–desorption, Raman spectroscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption methods. The characterization results indicated that manganese loading did not influence the 2D-hexagonal mesoporous structure of SBA-15. The catalyst had various oxidation states of manganese (Mn2+, Mn3+, and Mn4+), with Mn3+ being the dominant oxidation state. Toluene removal was investigated in the environment of pure N2 and 80 % N2 + 20 % O2 plasma, showing that the toluene removal efficiency and CO2 selectivity were noticeably increased by MnxOy/SBA-15, especially in the presence of 5 % Mn/SBA-15. This activity was closely related to the high dispersion of 5 % Mn on SBA-15 and the lowest reduction temperature exhibited by this catalyst. Mn loading increased the yield of CO2 in the N2 plasma and promoted the deep oxidation of toluene. During toluene oxidation, oxygen exchange might follow a pathway, wherein bulk oxygen was released from the MnxOy/SBA-15 surface; gas-phase O2 subsequently filled up the vacancies created on the oxide. Each of the manganese oxidation states played an important role; Mn2O3 was considered as a bridge for oxygen exchange between the gas phase and the catalyst, and Mn3O4 mediated transfer of oxygen between the catalyst and toluene.  相似文献   

11.
Y. Ogata  I. Urasaki  K. Nagura  N. Satomi 《Tetrahedron》1974,30(17):3021-3025
Oxidation of phenol, anisole and toluene with permonophosphoric acid in acetonitrile or water gives the corresponding ortho and para hydroxylated aromatics (HO-C6H4-X, X = OH, OMe, Me). The observed ortho :para ratio in a solvent acetonitrile are as follows: 5·0 with phenol, 3·5 with anisole and 2·0 with toluene. The oxidation rates for phenol and anisole in acetonitrile are expressed as: v = k″[ArH][H3PO5]2ho, where ho is the Hammett's acidity function and ArH is phenol or anisole. A mechanism involving a rate-determining attack of protonated dimeric perphosphoric acid 4 on aromatic carbon is presented and discussed.  相似文献   

12.
The aromatic compounds p‐nitrobenzaldehyde, p‐hydroxybenzaldehyde, naphthalene, toluene, catechol, quinol, aniline and toluidine dissolved in aqueous acetic acid or aqueous medium were oxidized in quantitative to good yields by 50% H2O2 in the presence of traces of RuCl3 (~10?8 mol; substrate/catalyst ratio 1488:1 to 341 250:1). Conditions for highest yields, in the most economical way, were obtained. Higher catalyst concentrations decrease the yield. Oxidation in aromatic aldehydes is selective at the aldehydic group only. In the case of hydrocarbons, oxidation results in the introduction of a hydroxyl group with >85% (in the case of toluene) selectivity for the ortho position. Formation of low‐molecular‐weight polyaniline was reduced to 10%, along with 90% formation of higher molecular weight polyaniline. In this new, simple and economical method, which is environmentally safe and requires less time, oxo‐centered carboxylate species of ruthenium(III) in acetic acid medium and hydrated ruthenium(III) chloride in aqueous medium probably catalyze the oxidation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
采用氧化还原法制备了α, δ, γ-MnO2载体, 采用原位还原法制备了Au负载量为0.5%-3.0%的Au/γ-MnO2催化剂, 并采用X射线衍射、扫描电镜、透射电镜和N2物理吸附等手段对其进行了表征. 透射电镜照片表明Au/γ-MnO2催化剂中Au颗粒的大小约为10 nm. 采用无溶剂存在下的甲苯氧化反应测试所制备样品的催化活性. 结果表明, 甲苯转化率随着Au负载量的增加而增大. 这是由于Au颗粒数量增多, 尺寸减小的缘故. 同时, 负载Au颗粒对苯甲醛具有较高的选择性. Au/γ-MnO2催化剂具有良好的重复使用性.  相似文献   

14.
Catalysts based on Co-Mg-Al, which were used for the total oxidation of toluene, were synthesized by using the hydrotalcite pathway. The calcination allowed us to obtain various mixed oxide types (i.e. Co3O4, Co2AlO4 or CoAl2O4), presenting mesopores of about 8 nm and high specific surface areas. The solids were tested for the total oxidation of toluene and showed a total selectivity in CO2 and H2O for 100% of toluene conversion. However, studies using diffuse reflectance infrared “operando” and GC-MS allowed us to identify intermediary by-products stemming from the catalytic oxidation of toluene: benzene and small quantities of benzaldehyde, styrene and acetophenone. In order to contribute to the improvement of the current scientific knowledge on volatile organic compound (VOC) toxicity in humans, the lung toxicity of toluene, benzene or their association was determined by using a human epithelial lung cell model (i.e. L132 cell line). VOC cytotoxicity was studied with three complementary methods: the enzymatic activity of extracellular lactate dehydrogenase (LDH), the enzymatic activity of mitochondrial dehydrogenase (mDH), and the incorporation of 5-Bromodesoxyuridine (5-BrdU). Taken together, these results showed the occurrence of adverse effects, notably reported by significant increases in LDH activity in cell culture supernatants, 24 hours after L132 cell exposure not only to toluene alone or benzene alone, but also to their association. This original approach allowed us to integrate some toxicological parameters to help the choice of new-dedicated catalysts for the oxidative conversion of VOC.  相似文献   

15.
Laboratory-scale experiments were performed to evaluate the humidity effect on toluene decomposition by using a wire-plate dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure. The toluene decomposition efficiency as well as the carbon dioxide selectivity with/without water in a gas stream of N2 with 5% O2 was investigated. Under the optimal humidity of 0.2% the characteristics of toluene decomposition in various background gas, including air, N2 with 500 ppm O2, and N2 with 5% O2 were observed. In addition, the influence of a catalyst on the decomposition was studied at selected humidities. It was found that the optimum toluene removal efficiency was achieved by the gas stream containing 0.2% H2O, since the presence of water enhanced the CO2 selectivity. In addition, the toluene removal efficiency increased significantly in a dry gas stream but decreased with an increase in the humidity when the Co3O4/Al2O3/nickel foam catalyst was introduced into the discharge area.  相似文献   

16.
The oxidation of toluene on pure vanadium and molybdenum oxides was found to follow independent paths; it was benzene ring oxidation on V2O5 and side chain oxidation on MoO3. On mixed xV2O5 · yMoO3 oxides, the main reaction was the addition at the double bond preferably positioned meta rather than one-electron oxidation.  相似文献   

17.
Thin films of pure Pd and composite of Pd and 1% multiwalled carbon nanotube have been obtained on glassy carbon electrodes by borohydride reduction method and investigated as electrocatalysts for the oxidation of phenol in acid medium at 25 °C, using cyclic voltammetry (CV), chronopotentiometry, and high-performance liquid chromatography. The CV study showed that both the electrocatalysts are quite stable and active for the phenol oxidation in acid medium. Further, these electrodes do not seem to undergo deactivation due to intermediates and products formed during the phenol oxidation. With the increase in phenol concentration from 2 to 25 mM, the peak current (I p) increases initially, reaches maximum at about 15 mM, and tends to decrease thereafter. The peak potential (E p) value was found to be practically unchanged with phenol concentration. The rate for phenol oxidation (I p) at the surface of both the electrocatalysts increased with the decrease in pH of the reaction mixture. The electrocatalytic activity of the composite electrode was, however, higher than that of pure Pd under similar experimental conditions. Benzoquinone and hydroquinone were identified as the major phenol degradation intermediate products.  相似文献   

18.
Ti- and V-containing MFI, MEL and MCM-41 catalysts were studied in the oxidation of cyclohexane, cyclohexene, naphthalene, tetralin, decalin and phenol with H2O2. Although TS-1 and TS-2 exhibited the highest activity and selectivity in the oxidation of n -hexane and 1-hexene, cyclohexene could only be oxidized effectively on the MCM-41 silicates. Since the oxidation of condensed aromatic systems over Ti- and V-containing MFI and MEL zeolites runs to difficulties, MCM-41 type catalysts may be offered for these reactions.  相似文献   

19.
The imidazole derivatives (N,N‐bis(2‐ethyl‐5‐methyl‐imidazole‐4‐ylmethyl) amino‐propane (biap)) and its complexes containing cobalt or copper ion were synthesized in this study. The oxidation reaction of phenol with oxidant H2O2 catalyzed by the metallomicelle made of the complexes of imidazole groups and micelle (CTAB, Brij35, LSS) as the mimetic peroxidase was studied. The results show that the reaction rate for the catalytic oxidation of phenol increases by a factor of approximately 1×105 in the metallomicelle over that in the simple micelles or the pure buffer solution at pH=6.9 and 25°C. The catalytic effects changed with H2O2, temperature, pH, and surfactant kind in the catalytic reactive process are discussed. A kinetic mathematic model of the phenol oxidation catalyzed by the metallomicelle is proposed.  相似文献   

20.
This paper reports the investigation ofC-alkylation of phenol with methanol over zinc ferrite as a catalyst. The reactions were carried out in gas phase at atmospheric pressure in dependence of increasing temperature. The total selectivity towardsortho-cresol and 2,6-xylenol over 300°C surpassed 90%. ZnFe2O4 was obtained by oxidative precipitation method from solution of iron (II) sulphate and zinc sulphate at 60°C. Based on the results, the best equation describing the oxidation reaction rate was found. The obtained products have been investigated using X-ray fluorescence spectrometry and X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号