首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence (LIF) technique. The superhydrophobic surface was prepared using a sol-gel method on a red copper test plate. From the obtained fluorescence images, the phase transition characteristics during the freezing and melting process of a water droplet were clearly observed. It was found that, at the beginning of the droplet freezing process, liquid water turned into ice at a very fast rate. Such phase transition process decreased gradually with time and the volume of frozen ice approached a constant value at the end of the icing process. In addition, the freezing time was found to reduce with the decrease of the test plate temperature. Besides, when the test plate temperature is relatively high, the effect of droplet volume on the freezing time is very significant. Over all, we provide some tentative insights into the microphysical process related to the icing and melting process of water droplets.  相似文献   

2.
The flow field structures of low density supersonic free jets impinging on a tilt plate are studied by hybrid use of LIF (Laser Induced Fluorescence) and PSP (Pressure Sensitive Paint). The jet through an orifice flows into a low pressure chamber and impinges on the tilt plate with angle from jet axis 45, 60 or 90 degrees. A plane including the jet axis and the normal of the plate is visualized by LIF of seeded iodine molecules, scanning a laser beam along the jet axis. On the other hand, the pressure distribution on the tilt plate is visualized by PSP. In comparing the results of the two methods, the complicated shock wave system is analyzed. Deformations of the Mach disk and the barrel shock are also confirmed.  相似文献   

3.
4.
董琪琪  胡海豹  陈少强  何强  鲍路瑶 《物理学报》2018,67(5):54702-054702
利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长.  相似文献   

5.
6.
The often-studied problem of the response of a fluid-loaded thin elastic plate to external forcing is considered again, with the aim of determining those “free waves” of the coupled system which can actually be excited. General properties of the quintic equation whose roots yield the free wavenumbers can be used to establish the character of those roots, and a generalized “coincidence condition” can be given at which the nature of the roots changes. It is argued, however, and demonstrated, that in general no significance can be attached to this condition or to any of the roots except that relating to the undamped subsonic surface wave. The far field contributions associated with all other waves, including the so-called “leaky waves”, may be altered merely by change of integration path from the stationary phase contour to the steepest descent contour in the complex wavenumber plane, and thus these contributions, which are exponentially small with distance, do not represent physically meaningful free modes. It is shown, however, that if a second limit process, associated with small fluid loading, is considered simultaneously with the far field limit, then the leaky waves can be unambiguously identified over a large, but not too large, range of distances, and that for such distances these waves generate a conical or plane beam (in three or two dimensions, respectively).  相似文献   

7.
液滴撞击液膜的射流与水花形成机理分析   总被引:6,自引:0,他引:6       下载免费PDF全文
梁刚涛  郭亚丽  沈胜强 《物理学报》2013,62(2):24705-024705
建立了单液滴撞击平面液膜的物理与数学模型,采用Coupled Level Set and Volume of Fluid方法对这种现象进行了数值模拟,探讨了黏度和表面张力对冠状水花形态的影响.通过分析撞击后液体内部的压力和速度分布,揭示了液滴颈部射流的产生机理,验证了Yarin和Weiss提出的运动间断理论.研究显示,表面张力对冠状水花形态的影响远大于黏度的影响.颈部射流的产生主要是由于撞击后颈部区域局部较大压差造成的,随着撞击过程的继续,压差作用减弱;液膜内流体的径向运动对射流发展成冠状水花具有推动作用.  相似文献   

8.
Mizukaki T. 《显形杂志》2007,10(2):227-235
The flow visualization and force measurement of a supersonic impinging jet on a center-holed vertical baffle plate were investigated. Center-holed baffle plates of 2d to 5d in diameter, with a 1d center hole were tested, where d is the bore of the launch tube. The standoff distance of the baffle plates from the open end of the launch tube were varied to be from 2d to 5d. The supersonic impulse jet, with an incident shock wave of Mach 2.89 was produced by a high-enthalpy blast-wave simulator. The direction-indicating color schlieren method produced a two-dimensional density gradient of the flow field around the baffle plate. In addition, the flow fields were numerically analyzed, using two-dimensional asymmetric Euler equations. The results of the numerically-analyzed and the experimentally-visualized flow field agreed well. The visualized flow field indicates that the baffle plate should be at least 3.5d in diameter to deflect the supersonic impinging jet at an angle greater than a right angle. We have concluded that the representative method of designing muzzle brakes for military purpose accurately predicts the force yielded by the supersonic impinging impulse jet on the vertical baffle plate only when there is a large ratio of the baffle-plate diameter to the bore of the launch tube.  相似文献   

9.
Results on experimental investigation of the dynamics of boiling-up at stepwise heat release on a horizontally oriented cylindrical surface in a large volume of freon-21 are presented. Experimental data on the propagation velocity, structure, and other local characteristics of development of self-sustained evaporation fronts at different temperature differences of boiling-up in saturated liquid were obtained. New experimental results on the dynamics of vapor phase incipience and evolution on the surface of a vertical heat releasing tube and on the dynamics of changing the heater temperature and pressure in a flow of liquid (water, ethanol) subcooled to saturation temperature in the channel under nonstationary heat release conditions are represented. It was revealed that the dependence of the expectation time of intense bubble growth on the water motion velocity is nonmonotonic.  相似文献   

10.
11.
12.
Y. Tasaka  K. Ito  M. Iima 《显形杂志》2008,11(2):163-172
This study aims to clarify the relationship between the deformation of a free surface and flow transition in a “switching phenomenon” process. In a flow driven by a rotating disk in a cylindrical open vessel, the free surface irregularly changes its shape from axisymmetric to nonaxisymmetric and vice versa with repeating up-and-down motion (so-called “switching phenomenon”). The flow under the free surface was visualized by anisotropic flakes. When the free surface assumes a parabolic shape, the flow is distinguished by three regions; local circulation region, rigid vortex region and meridional circulation region. The flow transition in the switching phenomenon was shown by snapshots and movies of the visualized flow; the flow near the free surface is laminar even if the shape of the free surface changes to nonaxisymmetric during the time at which the free surface attaches to the bottom of the vessel. After the free surface detaches from the disk, the flow near the free surface becomes turbulent. When the free surface changes to axisymmetric while descending to the bottom, the flow changes from turbulent to laminar flow and the local circulation region reemerges at the center of the vessel.  相似文献   

13.
14.
Although the phenomena related to the multiphase flow can be found in many kinds of industrial and engineering applications, the physical mechanism of the multiphase flow has not been investigated in detail. The major reason for the lack of data in the multiphase flow lies in the difficulties in measuring the flow quantities of the multiple phases simultaneously. Presently, the visualization and the PIV measurement have been carried out about the both phases of the liquid-liquid two-phase flow. The difference in the refractive indices makes the visualization in the vicinity of the boundary of the multiple phases very difficult. In this study, the refractive index of the aqueous phase has been equalized to that of the oil phase by adjusting the concentration of the aqueous solution. As for the surrounding fluid, silicon oil is chosen and as for the droplet, the aqueous solution of glycerol is prepared whose refractive index matches that of silicon oil. Both phases are seeded with neutrally buoyant particles. The droplet is slightly colored with Rhodamine B so that the position of the invisible droplet can be identified. The difference in the background brightness in both phases helps PIV algorithm in distinguishing the motions in each phases. The results show the details of the flow structures both around and inside of a falling droplet simultaneously.  相似文献   

15.
Molecular dynamics (MD) simulations are carried out to study the interaction between a carbon nanotube (CNT) plate and nano-sized water droplet. The cases with or without a quadrupole term acting on the charge sites of the water molecule, are directly compared. The wettability of the CNT plate with different separation distances is studied, and the contact angle on the plates with various separation distances is measured and analyzed. The simulation indicates that the contribution from quadrupole potential is negligible for wetting between twin CNTs and liquid water, while it is significant for holding a sphere-like water droplet and forming a reasonable contact angle.  相似文献   

16.
基于Brinkman-Forchheimer-extended Darcy流动模型,对恒热流条件下流体横掠多孔介质中平板的强制对流进行了边界层分析。通过建立二维流动的连续方程、动量方程和考虑流体与多孔介质局部非热平衡时的能量方程,应用数量级分析和积分的方法对方程组进行简化和求解,得出了流体的速度分布、温度分布、速度边界层和温度边界层的厚度、对流传热的理论关联式。研究结果表明:恒热流条件下流体横掠多孔介质中平板的速度边界层与光板时完全不同,其在平板前端迅速增长,随后沿着流动方向变得非常平坦并趋于一定值;而温度边界层的厚度发展则与光板时类似,沿着流动方向不断增长,且与壁面处热流密度的大小无关。  相似文献   

17.
18.
《Physics letters. A》1988,134(2):108-114
A phenomenological model of nonlinear mode competition between instability waves in the forced free shear layer is proposed. The model comprises mutually interacting nonlinear oscillators with distribution in intrinsic frequencies and exhibits “locking-on” behaviour, suppression of broadband fluctuations under forcing and induced subharmonic oscillations.  相似文献   

19.
The main stages of the formation of a droplet cloud during the disintegration of water masses (with an initial volume of 0.05–1 L) during their free fall from a great height (up to 15 m) have been determined. High-speed (up to 6 × 105 frames per second) video cameras were used to perform 3D video recording of the transformation and destruction of water mass with the formation of a droplet cloud. It is found that the transverse sizes of the newly formed droplet cloud rapidly increase when the mass passes the first few (up to 10) meters from the onset of falling. It is shown that the maximum cross-sectional areas of the water mass change only slightly with an increase in the discharge height at heights above 10 m. A model of limited growth of the transverse sizes of droplet cloud is developed for the first time based on the results of large-scale experiments.  相似文献   

20.
A class of nonlinear problems of non-stationary radiation-convective heat transfer under the conditions of microwave action with a small depth of penetration is considered in a forced laminar flow of liquid around a flat plane. The solutions to these problems are obtained using the effective asymptotic procedures at the successive stages of nonstationary and stationary radiation-convective heat transfer on the heat-radiating horizontal plane. The non-stationary and stationary stages of solution are matched using the “longitudinal coordinate-time” characteristic. The solutions constructed on such principles correlate reliably with the exact ones at the limiting values of such parameters as a small and large intensity of external thermal impact, small and large times, etc. The error of solutions does not exceed 1–7 %. As the plate is removed from the leading edge of the plate due to heat radiation, convective heat transfer degenerates from values characteristic of the boundary condition of the second kind to the values characteristic of the boundary condition of the first kind. A strong effect on the nature of variations of the surface temperature and Nusselt number of the complex parameter of microwave and thermal radiation is noted. An important advantage of the developed method for solving this class of external problems is that even before complex calculations it is possible to perform an exhaustive analysis of the fundamental laws of the processes under study. Despite a number of initial simplifications, the latter do not significantly affect the accuracy of results, guaranteeing reliable quantitative information. The developed method can also be extended to the regimes of forced convection with linear dependence of physical properties on temperature using transformation of A.A. Dorodnitsyn. To confirm adequacy of the constructed mathematical model, stationary radiation-convective heat transfer under the forced flow around a flat plate was studied experimentally. The results of comparison of the theoretical and experimental data show that they are in a good agreement. This again confirms the effectiveness of the developed method for constructing theoretical solutions to the nonlinear problems of forced convection using the asymptotic procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号