首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MP2/6-311++G(2df,2pd) level of theory was used to calculate intermolecular potential curves between CF(4), as a model for the C and F atoms of a fluorinated alkane surface, and CH(4), NH(3), NH(4)(+), H(2)CO, and H(2)O as models for different types of atoms and functional groups comprising protonated peptide ions. This level of theory was tested by comparisons with the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ theories. Explicit-atom (EA) analytic potential energy functions were then derived by fitting these potential energy curves with two-body potentials between the atoms of the two interacting molecules. An intermolecular potential for the interaction of a protonated peptide ion with a fluorinated alkane surface may be constructed from these two-body potentials. Intermolecular potentials, for which CF(4) is treated as a united atom (UA), were developed by isotropically averaging the CF(4) orientation for each of the EA potential energy curves. The intermolecular potential energy curves calculated for CF(4) are compared with curves calculated previously for CH(4) interacting with the same molecules, to consider the relative efficiency of energy transfer for protonated peptide ion collisions with hydrogenated and fluorinated alkane surfaces.  相似文献   

2.
The methyl cation and CF(3)(+) attack saturated, acyclic ketones to make vibrationally excited adduct ions. Despite their high internal energies and short lifetimes, these adducts undergo deep-seated rearrangements that parallel slower processes in solution. Observed pathways include alkene and alkane expulsions, in addition to (in the case of CF(3)(+)) the precedented loss of CF(2)O + HF. For the vast majority of ketones, the principal charged products are the CF(3)(+) adducts of lighter carbonyl compounds, ions that are not easily prepared by other avenues. Evidence for ion structures comes from collisionally activated unimolecular decomposition and bimolecular ion-molecule reactions. Typical examples are di-n-propyl and diisopropyl ketones (both of which produce CH(3)CH=OCF(3)(+) as the principal ion-molecule reaction product) and pentamethylacetone (which produces (CH(3))(2)C=OCF(3)(+) as virtually the sole ion-molecule reaction product). Isotopic labeling experiments account for mechanisms, and DFT calculations provide a qualitative explanation for the relative abundances of products from unimolecular decompositions of the chemically activated CF(3)(+) adduct ions that are initially formed.  相似文献   

3.
The formation of negative ions following electron impact to ethanol (CH(3)CH(2)OH) and trifluoroethanol (CF(3)CH(2)OH) is studied in the gas phase by means of a crossed electron-molecular beam experiment and in the condensed phase via Electron Stimulated Desorption (ESD) of fragment ions from the corresponding molecular films under UHV conditions. Gas phase ethanol exhibits two pronounced resonances, located at 5.5 eV and 8.2 eV, associated with a remarkable selectivity in the decomposition of the precursor ion. While the low energy resonance exclusively decomposes into O(-), that at higher energy generates OH(-) and a comparatively small signal of [CH(3)CH(2)O](-) due to the loss of a neutral hydrogen. CF(3)CH(2)OH shows a completely different behaviour, as now an intense feature at 1.7 eV appears associated with the loss of a neutral hydrogen atom exclusively occurring at the O site. The H(-) formation from the gas phase compounds is below the detection limit of the present experiment, while in ESD from 3 MonoLayer (ML) films of CH(3)CH(2)OH and CF(3)CH(2)OH the most intense fragment is H(-), appearing from a broad resonant feature between 7 and 12 eV. With CF(3)CH(2)OH, by using the isotopically-labelled analogues CF(3)CD(2)OH and CF(3)CH(2)OD it can be shown that this feature consists of two resonances, one located at 8 eV leading to H(-)/D(-) loss from the O site and a second resonance located at 10 eV leading to the loss of H(-)/D(-) from the CH(2) site.  相似文献   

4.
The interaction of small phospholipid vesicles with well-characterized surfaces has been studied to assess the effect of the surface free energy of the underlying monolayer on the formation of phospholipid/alkanethiol hybrid bilayer membranes (HBMs). The surface free energy was changed in a systematic manner using single-component alkanethiol monolayers and monolayers of binary mixtures of thiols. The binary surfaces were prepared on gold by self-assembly from binary solutions of the thiols HS-(CH(2))(n)()-X (n = 11, X = CH(3) or OH) in THF. Surface plasmon resonance (SPR), electrical capacitance, and atomic force microscopy (AFM) measurements were used to characterize the interaction of palmitoyl,oleoyl-phosphatidylcholine (POPC) vesicles with the surfaces. For all surfaces examined, it appears that the polar part of surface energy influences the nature of the POPC assembly that associates with the surface. Comparison of optical, capacitance, and AFM data suggests that vesicles can remain intact or partially intact even at surfaces with a contact angle with water of close to 100 degrees. In addition, comparison of the alkanethiols of different chain lengths and the fluorinated compound HS-(CH(2))(2)-(CF(2))(8)-CF(3) that characterize with a low value of the polar part of the surface energy suggests that the quality of the underlying monolayer in terms of number of defects has a significant influence on the packing density of the resulting HBM layer.  相似文献   

5.
We have studied the oxidation of self-assembled monolayers (SAMs) of alkanes and alkenes with a thermal beam of OH radicals. The target films were produced by bonding alkane thiols and alkene thiols to a gold surface and the SAMs are mounted in a vacuum chamber at a base pressure of 10-9 Torr. Hydroxyl radicals were produced by a corona discharge in an Ar/H2O2/water mixture. The resultant molecular beam was scanned by an electrostatic hexapole and the OH radicals [4 (+/- 1) x 1011 OH radicals cm-2 sec-1] were focused onto the target SAM. All of the hydroxyl radicals impinging on the SAM surface are rotationally (J' ' 相似文献   

6.
Binary mixtures of 11-mercaptoundecanoic acid (MUA) and other thiols of various lengths and terminal functions were chemisorbed on gold-coated surfaces via S–Au bonds to form mixed self-assembled monolayers (SAMs). Several values of the mole fraction of MUA in the thiol mixtures were tested and the structure and composition of the resulted thin films were characterized by X-ray photoelectron spectroscopy (XPS) and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results made it clear that co-adsorption of MUA with thiols of similar chain length led to well-ordered monolayers whereas the co-adsorption of MUA with shorter thiols yielded less crystalline-like thin films, but with more reactive carboxylic acid terminal groups. This criterion appeared decisive for efficient covalent binding of Staphylococcus aureus Protein A (PrA), a protein that displays high affinity for the constant fragment (Fc) of antibodies of the IgG type from various mammal species. The ability of immobilized Protein A to recognize and bind a model IgG appeared to be optimal for the mixed SAM of MUA and the short-chain, ω-hydroxythiol 6-mercaptohexanol in the proportion 1–3.  相似文献   

7.
Self-assembled monolayers of omega-(4'-methylbiphenyl-4-yl) alkane thiols CH3(C6H4)2(CH2)(n)SH (BPn, n = 2, 3, and 5) on Au(111) substrates, prepared at room and elevated temperatures, were studied using scanning tunneling microscopy. In contrast to the biphenyl thiol analogues with n = 0 or 1, ordered domains of large size are formed which exhibit small, periodic height variations on a length scale of several nanometers. These are attributed to solitons (or domain walls), resulting from structural mismatch between the molecular adlayer and the gold substrate. The implications of these results for the design of aromatic thiols to cope with stress and yield low-defect density self-assembled monolayers are discussed.  相似文献   

8.
We report the rich surface chemistry exhibited by the reactions of 1,1,1-trifluoroethyl iodide (CF3CH2I) adsorbed onto gallium-rich GaAs(100)-(4 x 1), studied by temperature-programmed desorption (TPD) and low-energy electron diffraction (LEED) studies and X-ray photoelectron spectroscopy (XPS). CF3CH2I adsorbs molecularly at 150 K but dissociates, below room temperature, to form a chemisorbed monolayer of CF3CH2 and I species. Recombinative desorption of molecular CF3CH2I competes with the further reactions of the CF3CH2 and I chemisorbed species. The CF3CH2 species can either undergo beta-fluoride elimination to yield gaseous CF2=CH2 or it can undergo self-coupling to form the corresponding higher alkane, CF3CH2CH2CF3. A second coupling product, CF3CH2CH=CF2, is also evolved, and it is postulated that migratory insertion of the liberated CF2=CH2 into the surface-carbon bond of the chemisorbed CF3CH2 is responsible for its formation. The iodines, formed by C-I scission in the chemisorbed CF3CH2I, and the fluorines, derived from beta-fluoride elimination in CF3CH2, react with the surface gallium dimers, and Ga-As back-bonds to generate five etch products (GaF, AsF, GaI, AsI, and As2) that desorb in the temperature range of 420 to >600 K. XPS data reveal that the surface stoichiometry remains constant throughout the entire annealing temperature range because of the desorption of both gallium- and arsenic-containing etch products, which occur sequentially. In this article, plausible mechanisms by which all products form and the binding sites of these reactions in the (4 x 1) reconstruction are discussed. Factors that control the rate constants of etch product versus hydrocarbon product formation and in particular how they impact on the respective desorption temperatures will be discussed.  相似文献   

9.
The solid state structures of three compounds that contain a perfluorinated chain, CF(3)(CF(2))(5)CH(2)CH(CH(3))CO(2)H, CF(3)(CF(2))(5)(CH(2))(4)(CF(2))(5)CF(3) and {CF(3)(CF(2))(5)CH(2)CH(2)}(3)P═O have been compared and a number of C-F···F-C and C-F···H-C interactions that are closer than the sum of the van der Waals radii have been identified. These interactions have been probed by a comprehensive computational chemistry investigation and the stabilizing energy between dimeric fragments was found to be 0.26-29.64 kcal/mol, depending on the type of interaction. An Atoms-in-Molecules (AIM) study has confirmed that specific C-F···F-C interactions are indeed present, and are not due simply to crystal packing. The weakly stabilizing nature of these interactions has been utilized in the physisorption of a selected number of compounds containing long chain perfluorinated ponytails onto a perfluorinated self-assembled monolayer, which has been characterized by IRRAS (Infrared Reflection Absorption Spectroscopy).  相似文献   

10.
以过渡状态理论为基础,研究了单分子振动选模反应的微正则系综速率常数的计算方法.在计算中考虑了量子力学隧道效应校正及振动对沿IRC运动的耦合作用校正.以反应C=CH(F)→HC≡CF的氢迁移反应和C=CF2→FC≡CF的氟迁移反应为例,研究了它们的面外振动选模反应的速率常数.结果表明,这两个反应在低能区有明显的选模性,在高能区选模性减弱.  相似文献   

11.
A series of 2-alkyl-2-methylpropane-1,3-dithiol derivatives with increasing alkyl chain lengths (i.e., CH3(CH2)mC(CH3)[CH2SH]2, where m = 7, 9, 11, 13, 15) were synthesized and used to generate self-assembled monolayers (SAMs) on gold. The resulting monolayers were analyzed by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy, and X-ray photoelectron spectroscopy. These data were compared with those obtained on SAMs on gold derived from normal alkanethiols (CH3(CH2)(m+2)SH) and 2-monoalkylpropane-1,3-dithiols (CH3(CH2)(m)CH[CH2SH]2) having the same number of carbon atoms in the primary chain. The results demonstrate that the 2-alkyl-2-methylpropane-1,3-dithiols generate conformationally disordered monolayer films in which the density of alkyl chains is less than those generated from normal alkanethiols and the 2-monoalkylpropane-1,3-dithiols.  相似文献   

12.
The role of negative hyperconjugation and anomeric and polar effects in stabilizing the XZHCbetaCalphaYY'- intermediates in SNV reactions was studied computationally by DFT methods. Destabilizing steric effects are also discussed. The following ions were studied: X = CH3O, CH3S, CF3CH2O and Y = Y' = Z = H (7b-7d), Y = Y' = H, Z = CH3O, CH3S, CF3CH2O (7e-7i), YY' = Meldrum's acid-like moiety (Mu), Z = H, (8b-8d), and YY' = Mu, Z = CH3O, CH3S, CF3CH2O (8e-8i). The electron-withdrawing Mu substituent at Calpha stabilizes considerably the intermediates and allows their accumulation. The hyperconjugation ability (HCA) (i.e., the stabilization due to 2p(Calpha) --> sigma*(Cbeta-X) interaction) in 8b-8d follows the order (for X, kcal/mol) CH3S (8.5) > CF3CH2O (7.6) approximately CH3O (7.5). The HCA in 8b-8d is significantly smaller than that in 7b-7d due to charge delocalization in Mu in the former. The calculated solvent (1:1 DMSO/H2O) effect is small. The stability of disubstituted ions (7e-7i and 8e-8i) is larger than that of monosubstituted ions due to additional stabilization by negative hyperconjugation and an anomeric effect. However, steric repulsion between the geminal Cbeta substituents destabilizes these ions. The steric effects are larger when one or both substituents are CH3S. The anomeric stabilization (the energy difference between the anti,anti and gauche,gauche conformers) in the disubstituted anions contributes only a small fraction to their total stabilization. Its order (for the following X/Z pairs, kcal/mol) is CF3CH2O/CH3S (8i, 4.9) > CF3CH2O/CH3O (8h, 3.9) > CH3O/CH3S (8g, 3.3) > CH3S/CH3S (8f, 2.9) > CH3O/CH3O (8e, 2.4). Significantly larger anomeric effects of ca. 8-9 kcal/mol are calculated for the corresponding conjugate acids.  相似文献   

13.
Gaseous CF(3)(+) interchanges F(+) for O with simple carbonyl compounds. CF(3)(+) reacts with propionaldehyde in the gas phase to produce (CH(3))(2)CF(+) via two competing pathways. Starting with 1-(13)C-propionaldehyde, the major pathway (80%) produces (CH(3))(2)CF(+) with the carbon label in one of the methyl groups. The minor pathway (20%) produces (CH(3))(2)CF(+) with the carbon label in the central position. The relative proportions of these two pathways are measured by (19)F NMR analysis of the neutral CH(3)CF=CH(2) produced by deprotonation of (CH(3))(2)CF(+) at <10(-)(3) Torr in an electron bombardment flow (EBFlow) reactor. Formation of alkene in which carbon is directly bonded to fluorine means that (in the minor product, at least) an F(+) for O transposition occurs via adduct formation followed by 1,3-atom transfer and then isomerization of CH(3)CH(2)CHF(+) to the more stable (CH(3))(2)CF(+). Use of CF(4) as a chemical ionization (CI) reagent gas leads to CF(3)(+) adduct ions for a variety of ketones, in addition to isoelectronic transposition of F(+) for O. Metastable ion decompositions of the adduct ions yield the metathesis products. Decompositions of fluorocycloalkyl cations formed in this manner give evidence for the same kinds of rearrangements as take place in CH(3)CH(2)CHF(+). Density functional calculations confirm that F(+) for O metathesis takes place via addition of CF(3)(+) to the carbonyl oxygen followed by transposition via a four-member cyclic transition state. A computational survey of the effects of different substituents in a series of aldehydes and acyclic ketones reveals no systematic variation of the energy of the transition state as a function of thermochemistry, but the Hammond postulate does appear to be obeyed in terms of progress along the reaction coordinate. Bond lengths corresponding to the central barrier correlate with overall thermochemistry of the F(+) for O interchange, but in a sense opposite to what might have been expected: the transition state becomes more product-like as the metathesis becomes increasingly exothermic. This reversal of the naive interpretation of the Hammond postulate is accounted for by the relative positions of the potential energy wells that precede and follow the central barrier.  相似文献   

14.
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.  相似文献   

15.
郭勇  陈庆云 《化学学报》2001,59(10):1722-1729
二氟二碘甲烷(CF2I2,1)与乙烯基乙醚和Na2S2O4在DMSO和乙醇的混合溶剂中反应得3,3-二氟-3-碘丙醛的乙缩醛[ICF2CH2CH(OEt)2](3).3在锌粉的作用下发生偶联反应生成二缩醛[(EtO)2CHCH2CF2CF2CH2CH(OEt)2](5)。缩醛3或5与烯醇硅醚在SnCl4作用下发生交叉偶联反应。3在锌粉或保险粉的引下与烯醇硅醚发生加成反应。3和5分别转化成硫缩醛ICF2CH2CH(SR)2(13),(RS)2CHCH2CF2CF2CH2CH(SR)2(14)或O,S-缩醛。13消HI得1,1-二氟乙烯衍生物。  相似文献   

16.
Recently synthesized (Winter, R.; Nixon, P. G.; Gard, G. L.; Radford, D. H.; Holcomb, N. R.; Grainger, D. W. J. Fluorine Chem. 2001, 107, 23-30) SF5-terminated perfluoroalkyl thiols (SF5(CF2)nCH2CH2SH, where n = 2, 4, and 6) and a symmetric SF5-terminated dialkyl disulfide ([SF5-CH=CH-(CH2)8-S-]2) were assembled as thin films chemisorbed onto gold surfaces. The adsorbed monolayer films of these SF5-containing molecules on polycrystalline gold were compared using ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and infrared spectroscopy (FTIR) surface analytical methods. The resulting SF5-dialkyl disulfide monolayer film shows moderate angle dependence in depth-dependent XPS analysis, suggesting a preferentially oriented film. The SF5-terminated perfluoroalkyl thiols exhibit angular-dependent XPS compositional variance depending on perfluoroalkyl chain length, consistent with improved film assembly (increasingly hydrophobic, fewer defects, and more vertical chain orientation increasing film thickness) with increasing chain length. Tof-SIMS measurements indicate that both full parent ions for these film-forming molecules and the unique SF5 terminal group are readily detectable from the thin films without substantial contamination from other adsorbates.  相似文献   

17.
A phenanthroline-based macrocycle 1 has been newly developed which has two chemically equivalent metal chelating sites within the spatially restricted cavity for dinuclear metal arrangement. The macrocycle 1 reacts with Zn(CF(3)CO(2))(2) or ZnCl(2) to form homodinuclear Zn(II)-complexes. A single-crystal X-ray structural analysis of the resulting Zn(2)1(CF(3)CO(2))(4) determined the complex structure in which two Zn(II) ions are bound by two phenanthroline sites and two CF(3)CO(2)(-) ions bind to each Zn(II) ion in a tetrahedral geometry. Similarly, a homodinuclear Cu(I)-macrocycle was formed from 1 and Cu(CH(3)CN)(4)BF(4). Notably, from 1 and an equimolar mixture of Cu(CH(3)CN)(4)BF(4) and Zn(CF(3)CO(2))(2), a heterodinuclear Cu(I)-Zn(II)-macrocycle was exclusively formed in high yield (>90%) because of the relatively low stability of the dinuclear Cu(I)-macrocycle. A heterodinuclear Ag(I)-Zn(II)-macrocycle was similarly formed with fairly high selectivity from a mixture of Ag(I) and Zn(II) ions. Such selective heterodinuclear metal arrangement was not observed with other combinations of M-Zn(II) (M = Li(I), Mg(II), Pd(II), Hg(II), La(III), and Tb(III)).  相似文献   

18.
Dissociative scattering of CF3+ ions in collision with a self-assembled monolayer surface of fluorinated alkyl thiol on a gold 111 crystal has been studied at low ion kinetic energies (from 29 to 159 eV) using a custom built tandem mass spectrometer with a rotatable second stage energy analyzer and mass spectrometer detectors. Energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment ion mass and scattering angle. Inelastically scattered CF3+ ions were not observed even at the lowest energy studied here. All fragment ions, CF2+, CF+, F+, and C+, were observed at all energies studied with the relative intensity of the highest energy pathway, C+, increasing and that of the lowest energy pathway, CF2+, decreasing with collision energy. Also, the dissociation efficiency of CF3+ decreased significantly as the collision energy was increased to 159 eV. Energy distributions of all fragment ions from the alkyl thiol surface showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to the surface parallel. The latter process is due to delayed dissociation of collisionally excited ions after they have passed the collision region as excited parent ions. A similar study performed at 74 eV using a LiF coated surface on a titanium substrate resulted only in one process for all fragment ions; corresponding to the delayed dissociation process. The intensity maxima for these fragmentation processes were shifted farther away from the surface parallel compared to the thiol surface. A new mechanism is proposed for the delayed dissociation process as proceeding via projectile ions' neutralization to long-lived highly excited Rydberg state(s), reionization by the potential field between the collision region and entrance to the energy analyzer, and subsequent dissociation several microseconds after collisional excitation. A kinematic analysis of experimental data plotted as velocity Newton diagrams demonstrates that the delayed dissociation process results from the collisions of the ion with the bulk surface; i.e., the self-assembled monolayer surface acts as a bulk surface. A similar analysis for the highly inelastic collision processes shows that these are due to stronger collisions with a fraction of the thiol molecular chain, varying in length (mass) with the ion energy.  相似文献   

19.
A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within Ti+(ROH)n (R = C2H5, CF3CH2) heterocluster ions. The mass spectra exhibit a major sequence of cluster ions with the formula Ti+(OR)m(ROH)n (m = 1, 2), which is attributed to sequential insertions of Ti+ into the O-H bond of C2H5OH or CF3CH2OH molecules within the heteroclusters, followed by H eliminations. The TiO+ and TiOH+ ions produced from the reactions of Ti+ with C2H5OH are interpreted as arising from insertion of Ti+ into the C-O bond, followed by C2H5 and C2H6 eliminations, respectively. When Ti+ reacted with CF3CH2OH, by contrast, considerable contributions from TiFOH+, TiF2+, and TiF2OH+ ions were observed in the mass spectrum of the reaction products, indicating that F and OH abstractions are the dominant product channels. Ab initio calculations of the complex of Ti+ with 2,2,2-trifluoroethanol show that the minimum energy structure is that in which Ti+ is attached to the O atom and one of the three F atoms of 2,2,2-trifluoroethanol, forming a five-membered ring. Isotope-labeling experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by the presence of fluorine substituents and cluster size. The reaction energetics and formation mechanisms of the observed heterocluster ions are discussed.  相似文献   

20.
Vibrationally activated CF(3)CH(2)CH(2)Cl molecules were prepared with 94 kcal mol(-1) of vibrational energy by the combination of CF(3)CH(2) and CH(2)Cl radicals and with 101 kcal mol(-1) of energy by the combination of CF(3) and CH(2)CH(2)Cl radicals at room temperature. The unimolecular rate constants for elimination of HCl from CF(3)CH(2)CH(2)Cl were 1.2 x 10(7) and 0.24 x 10(7) s(-1) with 101 and 94 kcal mol(-1), respectively. The product branching ratio, k(HCl)/k(HF), was 80 +/- 25. Activated CH(3)CH(2)CH(2)Cl and CD(3)CD(2)CH(2)Cl molecules with 90 kcal mol(-1) of energy were prepared by recombination of C(2)H(5) (or C(2)D(5)) radicals with CH(2)Cl radicals. The unimolecular rate constant for HCl elimination was 8.7 x 10(7) s(-1), and the kinetic isotope effect was 4.0. Unified transition-state models obtained from density-functional theory calculations, with treatment of torsions as hindered internal rotors for the molecules and the transition states, were employed in the calculation of the RRKM rate constants for CF(3)CH(2)CH(2)Cl and CH(3)CH(2)CH(2)Cl. Fitting the calculated rate constants from RRKM theory to the experimental values provided threshold energies, E(0), of 58 and 71 kcal mol(-1) for the elimination of HCl or HF, respectively, from CF(3)CH(2)CH(2)Cl and 54 kcal mol(-1) for HCl elimination from CH(3)CH(2)CH(2)Cl. Using the hindered-rotor model, threshold energies for HF elimination also were reassigned from previously published chemical activation data for CF(3)CH(2)CH(3,) CF(3)CH(2)CF(3), CH(3)CH(2)CH(2)F, CH(3)CHFCH(3), and CH(3)CF(2)CH(3). In an appendix, the method used to assign threshold energies was tested and verified using the combined thermal and chemical activation data for C(2)H(5)Cl, C(2)H(5)F, and CH(3)CF(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号