首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, sequential and parallel algorithms are presented to find a maximum independent set with largest weight in a weighted permutation graph. The sequential algorithm, which is designed based on dynamic programming, runs in timeO(nlogn) and requiresO(n) space. The parallel algorithm runs inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM.  相似文献   

2.
Given ann-vertex simple polygonP, the problem of computing the shortest weakly visible subedge ofPis that of finding a shortest line segmentson the boundary ofPsuch thatPis weakly visible froms(ifsexists). In this paper, we present new geometric observations that are useful for solving this problem. Based on these geometric observations, we obtain optimal sequential and parallel algorithms for solving this problem. Our sequential algorithm runs inO(n) time, and our parallel algorithm runs inO(log n) time usingO(n/log n) processors in the CREW PRAM computational model. Using the previously best known sequential algorithms to solve this problem would takeO(n2) time. We also give geometric observations that lead to extremely simple and optimal algorithms for solving, both sequentially and in parallel, the case of this problem where the polygons are rectilinear.  相似文献   

3.
We propose a parallel algorithm which reduces the problem of computing Hamiltonian cycles in tournaments to the problem of computing Hamiltonian paths. The running time of our algorithm is O(log n) using O(n2/log n) processors on a CRCW PRAM, and O(log n log log n) on an EREW PRAM using O(n2/log n log log n) processors. As a corollary, we obtain a new parallel algorithm for computing Hamiltonian cycles in tournaments. This algorithm can be implemented in time O(log n) using O(n2/log n) processors in the CRCW model and in time O(log2n) with O(n2/log n log log n) processors in the EREW model.  相似文献   

4.
In this paper, parallel algorithms are presented for solving some problems on permutation graphs. The coloring problem is solved inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM. The weighted clique problem, the weighted independent set problem, the cliques cover problem, and the maximal layers problem are all solved with the same complexities. We can also show that the longest common subsequence problem belongs to the class NC.  相似文献   

5.
1.IntroductionLetG=(V,E,W)beaconnected,weightedandundirectedgraph,VeEE,w(e)(相似文献   

6.
The problem of sorting n integers from a restricted range [1…m], where m is a superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = npolylog(n) we have an O(n log log n) algorithm.) The algorithm is parallelizable. The resulting parallel algorithm achieves optimal speedup. Some features of the algorithm make us believe that it is relevant for practical applications. A result of independent interest is a parallel hashing technique. The expected construction time is logarithmic using an optimal number of processors, and searching for a value takes O(1) time in the worst case. This technique enables drastic reduction of space requirements for the price of using randomness. Applicability of the technique is demonstrated for the parallel sorting algorithm and for some parallel string matching algorithms. The parallel sorting algorithm is designed for a strong and nonstandard model of parallel computation. Efficient simulations of the strong model on a CRCW PRAM are introduced. One of the simulations even achieves optimal speedup. This is probably the first optimal speedup simulation of a certain kind.  相似文献   

7.
An efficient parallel algorithm is presented to find a maximum weight independent set of a permutation graph which takesO (logn) time usingO (n 2/logn) processors on an EREW PRAM, provided the graph has at mostO (n) maximal independent sets. The best known parallel algorithm takesO (log2 n) time andO (n 3/logn) processors on a CREW PRAM.  相似文献   

8.
We present a parallel randomized algorithm running on aCRCW PRAM, to determine whether two planar graphs are isomorphic, and if so to find the isomorphism. We assume that we have a tree of separators for each planar graph (which can be computed by known algorithms inO(log2 n) time withn1 + εprocessors, for any ε > 0). Ifnis the number of vertices, our algorithm takesO(log(n)) time with processors and with a probability of failure of 1/nat most. The algorithm needs 2 · log(m) − log(n) + O(log(n)) random bits. The number of random bits can be decreased toO(log(n)) by increasing the number of processors ton3/2 + ε, for any ε > 0. Our parallel algorithm has significantly improved processor efficiency, compared to the previous logarithmic time parallel algorithm of Miller and Reif (Siam J. Comput.20(1991), 1128–1147), which requiresn4randomized processors orn5deterministic processors.  相似文献   

9.
In this paper, we present parallel quicksort algorithms running inO((n/p+logp) logn) expected time andO((n/p+logp+log logn) logn) deterministic time respectively, and both withO(n) space by usingp processors on EREW PRAM. Whenp=O(n/logn), the cost is optimal, in terms of the product of time and number of processors. These algorithms can be used to obtain parallel algorithms for constructing balanced binary search trees without using sorting algorithms. One of our quicksort algorithms leads to a parallel quickhull algorithm on EREW PRAM.The work of this author was partially supported by a fellowship from the College of Science, Old Dominion University, Norfolk, VA 23529, USA.  相似文献   

10.
Efficient parallel algorithms are presented, on the CREW PRAM model, for generating a succinct encoding of all pairs shortest path information in a directed planar graphG with real-valued edge costs but no negative cycles. We assume that a planar embedding ofG is given, together with a set ofq faces that cover all the vertices. Then our algorithm runs inO(log2 n) time and employsO(nq+M(q)) processors (whereM(t) is the number of processors required to multiply twot×t matrices inO(logt) time). Let us note here that wheneverq<n then our processor bound is better than the best previous one (M(n)).O(log2 n) time,n-processor algorithms are presented for various subproblems, including that of generating all pairs shortest path information in a directedouterplanar graph. Our work is based on the fundamental hammock-decomposition technique of G. Frederickson. We achieve this decomposition inO(logn log*n) parallel time by usingO(n) processors. The hammock-decomposition seems to be a fundamental operation that may help in improving efficiency of many parallel (and sequential) graph algorithms.This work was partially supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM) and by the Ministry of Industry, Energy and Technology of Greece.  相似文献   

11.
AnO(n logn) divide-and-conquer algorithm for finding the relative neighborhood graph RNG(V) of a set V ofn points in Euclidean space is presented. If implemented in parallel, its time complexity isO(n) and it requiresO(logn) processors.  相似文献   

12.
A simple parallel randomized algorithm to find a maximal independent set in a graph G = (V, E) on n vertices is presented. Its expected running time on a concurrent-read concurrent-write PRAM with O(|E|dmax) processors is O(log n), where dmax denotes the maximum degree. On an exclusive-read exclusive-write PRAM with O(|E|) processors the algorithm runs in O(log2n). Previously, an O(log4n) deterministic algorithm was given by Karp and Wigderson for the EREW-PRAM model. This was recently (independently of our work) improved to O(log2n) by M. Luby. In both cases randomized algorithms depending on pairwise independent choices were turned into deterministic algorithms. We comment on how randomized combinatorial algorithms whose analysis only depends on d-wise rather than fully independent random choices (for some constant d) can be converted into deterministic algorithms. We apply a technique due to A. Joffe (1974) and obtain deterministic construction in fast parallel time of various combinatorial objects whose existence follows from probabilistic arguments.  相似文献   

13.
In this paper we define the binary tree algebraic computation (BTAC) problem and develop an efficient parallel algorithm for solving this problem. A variety of graph problems (minimum covering set, minimum r-dominating set, maximum matching set, etc.) for trees and two terminal series parallel (TTSP) graphs can be converted to instances of the BTAC problem. Thus efficient parallel algorithms for these problems are obtained systematically by using the BTAC algorithm. The parallel computation model is an exclusive read exclusive write PRAM. The algorithms for tree problems run in O(log n) time with O(n) processors. The algorithms for TTSP graph problems run in O(log m) time with O(m) processors where n (m) is the number of vertices (edges) in the input graph. These algorithms are within an O(log n) factor of optimal.  相似文献   

14.
In this paper, a sequential algorithm is presented to find all cut-vertices on trapezoid graphs. To every trapezoid graph G there is a corresponding trapezoid representation. If all the 4n corner points of n trapezoids, in a trapezoid representation of a trapezoid graph G with n vertices, are given, then the proposed sequential algorithm runs in O(n) time. Parallel implementation of this algorithm can be done in O(log n) time using O(n/ log n) processors on an EREW PRAM model.  相似文献   

15.
Interval allocation has been suggested as a possible formalization for the PRAM of the (vaguely defined) processor allocation problem, which is of fundamental importance in parallel computing. The interval allocation problem is, given n nonnegative integers x1, . . ., xn, to allocate n nonoverlapping subarrays of sizes x1, . . ., xn from within a base array of Onj=1xj) cells. We show that interval allocation problems of size n can be solved in O((log log n)3) time with optimal speedup on a deterministic CRCW PRAM. In addition to a general solution to the processor allocation problem, this implies an improved deterministic algorithm for the problem of approximate summation. For both interval allocation and approximate summation, the fastest previous deterministic algorithms have running times of Θ(log n/log log n). We describe an application to the problem of computing the connected components of an undirected graph. Finally we show that there is a nonuniform deterministic algorithm that solves interval allocation problems of size n in O(log log n) time with optimal speedup.  相似文献   

16.
We present an efficient algorithm for finding a sparse k-edge-connectivity certificate of a multigraph G. Our algorithm runs in O((log kn)(log k)2(log n)2) time using O(k(n + m′)) processors on an ARBITRARY CRCW PRAM, where n and m′ stand for the numbers of vertices in G and edges in the simplified graph of G, respectively.  相似文献   

17.
We give two optimal parallel algorithms for constructing the arrangement ofn lines in the plane. The first nethod is quite simple and runs inO(log2 n) time usingO(n 2) work, and the second method, which is more sophisticated, runs inO(logn) time usingO(n 2) work. This second result solves a well-known open problem in parallel computational geometry, and involves the use of a new algorithmic technique, the construction of an -pseudocutting. Our results immediately imply that the arrangement ofn hyperplanes in d inO(logn) time usingO(n d) work, for fixedd, can be optimally constructed. Our algorithms are for the CREW PRAM.This research was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

18.
Acoreof a graphGis a pathPinGthat is central with respect to the property of minimizingd(P)=∑vV(G)d(v, P), whered(v, P) is the distance from vertexvto pathP. This paper presents efficient algorithms for finding a core of a tree with a specified length. The sequential algorithm runs inO(n log n) time, wherenis the size of the tree. The parallel algorithm runs inO(log2n) time usingO(n) processors on an EREW PRAM model.  相似文献   

19.
Ray Shooting Amidst Convex Polygons in 2D   总被引:1,自引:0,他引:1  
We consider the problem of ray shooting in a two-dimensional scene consisting ofmconvex polygons with a total ofnedges. We present a data structure that requiresO(mn log m) space and preprocessing time and that answers a ray shooting query inO(log2 m log2 n) time. If the polygons are pairwise disjoint, the space and preprocessing time can be improved toO((m2+n)log m) andO((m2+n log n)log m), respectively. Our algorithm also works for a collection of disjoint simple polygons. We also show that if we allow onlyO(n) space, a ray shooting query among a collection of disjoint simple polygons can be answered in timeO(m/[formula]1+ log2 n) time, for any >0.  相似文献   

20.
Many combinatorial problems can be efficiently solved in parallel for series–parallel multigraphs. The edge-coloring problem is one of a few combinatorial problems for which no NC parallel algorithm has been obtained for series–parallel multigraphs. This paper gives an NC parallel algorithm for the problem on series–parallel multigraphsG. It takesO(log n) time withOn/log n) processors, wherenis the number of vertices and Δ is the maximum degree ofG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号