首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
《Nuclear Physics B》1986,278(2):380-416
We discuss a class of lattice gauge-Higgs models with local x global symmetry groups. These may also be viewed as a new class of disordered spin models. We give general properties of these theories and present exact solutions for certain (infinite) classes of discrete 2D models. Given the strong gauge coupling limit involved, the latter constitute the first nontrivial exactly solved gauge-Higgs theories. Our results provide the first existence proof of theories which satisfy a necessary condition of realistic gauge-Higgs models, namely that the mass gaps for the Higgs and gauge sectors must both vanish and their ratio must approach a finite constant, in the continuum limit.  相似文献   

3.
We study the behaviour at finite temperature of massless field theories exhibiting spontaneously broken solutions. We establish the occurence of a phase transition of the first kind at some critical point Tc which can be calculated to any finite order in perturbation theory. Similarly, perturbative methods can be used for thermodynamic functions in all regions, including the critical region. For the case of a gauge theory, we demonstrate the gauge independence of the critical point, the thermodynamic potentials and the order parameter to all orders of perturbation theory.  相似文献   

4.
A systematic approach to large β expansions of nonabelian lattice gauge theories in temporal gauge is developed. The gauge fields are parameterized by a particular set of coordinates. The main problem is to define a regularization scheme for the infrared singularity that in this gauge appears in the Green's function in the infinite lattice limit. Comparison with exactly solvable two-dimensional models proves that regularization by subtraction of a naive translation invariant Green's function does not work. It suggests to use a Green's function of a half-space lattice first, to place the local observable in this lattice, and to let its distance from the lattice boundary tend to infinity at the end. This program is applied to the Wilson loop correlation function for the gauge group SU(2) which is calculated to second order in 1β.  相似文献   

5.
Several problems in lattice gauge theories such as mean field theory or the few plaquette problem lead to the evaluation of the properties of one link in an external matrix source. This problem is solved here in the large N limit. There are two phases characterized by a single parameter, the average value of the inverse of the modulus of the eigenvalues of the external source. The third derivative of the free energy is discontinuous at the transition point.  相似文献   

6.
Triviality of scalar field theories makes the naive version of spontaneous symmetry breaking (SSB) questionable. We study whether the problem of triviality is removed by other sectors of a theory without a need for physical cutoffs (or embedding scales) in the largeN limit. The problem for a similar situation with finiteN can be understood as being some deviation from the largeN limit. This point of view shows the systematic of the problem in a nice way. In consequence the result can be used as an aid for understanding or avoiding such problems in other models. Additionally it is shown that the formal asymmetry of SSB where scalars are just needed to break the symmetry is removed. The right amount of gauge bosons and fermions is needed in balance to stabilize SSB. Upper bounds for fermion and Higgs masses arise naturally.  相似文献   

7.
We study chiral symmetry in the strong coupling limit of lattice gauge theory with staggered fermions and show rigorously that chiral symmetry is broken spontaneously in massless QED and the gauge-invariant Nambu-Jona-Lasinio model if the dimension of spacetime is at least four. The results for the chiral condensate as a function of the mass imply that the mean-field approximation is an upper bound for this observable which becomes exact as the dimension goes to infinity. For the model with gauge groupU(N),N=2,3,4, we prove that chiral long-range order exists at zero mass in four or more dimensions. Address after August 1991: Mathematics Department, University of British Columbia, Vancouver, Canada V6T1Y4  相似文献   

8.
With the aim of a further investigation of the nonperturbative Hamiltonian approach in gauge field theories, the mass spectrum of QED-2 is calculated numerically by using the corrected Hamiltonian that was constructed previously for this theory on the light front. The calculations are performed for a wide range of the ratio of the fermion mass to the fermion charge at all values of the parameter \(\hat \theta \) related to the vacuum angle θ. The results obtained in this way are compared with the results of known numerical calculations on a lattice in Lorentz coordinates. A method is proposed for extrapolating the values obtained within the infrared-regularized theory to the limit where the regularization is removed. The resulting spectrum agrees well with the known results in the case of θ = 0; in the case of θ = π, there is agreement at small values of the fermionmass (below the phase-transition point).  相似文献   

9.
We study the breakdown of chiral invariance by calculating, in the infinite coupling, large-N limit, the generating functional of a U(N) gauge theory with one fermion, expressed on a lattice with the naive, chiral symmetric action. We compute the link integral over the gauge fields and the expression obtained after the integration over the fermions is recast under the form of a generating functional for bosonic fields. Then, a saddle-point method allows the calculation of the order parameter ψψ〉 for which a non-zero value signals the spontaneous breakdown of chiral symmetry. The analysis of the fluctuations around the saddle point allows one to exhibit the Goldstone modes corresponding to those global symmetries of the fermionic lattice action which are simultaneously broken.  相似文献   

10.
The presence of a constant background antisymmetric tensor for open strings or D-branes forces the space-time coordinates to be noncommutative. This effect is equivalent to replacing ordinary products in the effective theory by the deformed star product. An immediate consequence of this is that all fields get complexified. The only possible noncommutative Yang–Mills theory is the one with U(N) gauge symmetry. By applying this idea to gravity one discovers that the metric becomes complex. We show in this article that this procedure is completely consistent and one can obtain complexified gravity by gauging the symmetry U(1,D−1) instead of the usual SO(1,D−1). The final theory depends on a Hermitian tensor containing both the symmetric metric and antisymmetric tensor. In contrast to other theories of nonsymmetric gravity the action is both unique and gauge invariant. The results are then generalized to noncommutative spaces. Received: 1 June 2000 / Accepted: 27 November 2000  相似文献   

11.
We consider lattice gauge theories with finite abelian groupG in the weak coupling regime. It is shown that there is only one translation invariant equilibrium state for the infinite system. In four dimensions we construct a nontranslation invariant equilibrium state, describing an infinite system with localized magnetic flux tube, starting and ending at infinity.  相似文献   

12.
We present a 5D gauge theory in warped space based on a bulk SU(2)L x SU(2)R x U(1)(B-L) gauge group where the gauge symmetry is broken by boundary conditions. The symmetry breaking pattern and the mass spectrum resemble that in the standard model (SM). To leading order in the warp factor the rho parameter and the coupling of the Z (S parameter) are as in the SM, while corrections are expected at the level of a percent. From the anti-de Sitter (AdS) conformal field theory point of view the model presented here can be viewed as the AdS dual of a (walking) technicolorlike theory, in the sense that it is the presence of the IR brane itself that breaks electroweak symmetry, and not a localized Higgs on the IR brane (which should be interpreted as a composite Higgs model). This model predicts the lightest W, Z, and gamma resonances to be at around 1.2 TeV, and no fundamental (or composite) Higgs particles.  相似文献   

13.
Phase diagrams of lattice gauge theories have in several cases lines of first-order transitions ending at points at which continuous (second-order) transitions take place. In the vicinity of this critical point, a continuum field theory may be defined. We have analyzed here a Z2 gauge plus matter model (which has no formal continuum limit) and identified the critical point with a usual Ø4, globally Z2 invariant, field theory. The analysis relies on a mean field functional formalism and on a loop-wise expansion around it, which is reviewed.  相似文献   

14.
The 2d gauge theory on the lattice is equivalent to the twisted Eguchi–Kawai model, which we simulated at N ranging from 25 to 515. We observe a clear large N scaling for the 1‐ and 2‐point function of Wilson loops, as well as the 2‐point function of Polyakov lines. The 2‐point functions agree with a universal wave function renormalization. The large N double scaling limit corresponds to the continuum limit of non‐commutative gauge theory, so the observed large N scaling demonstrates the non‐perturbative renormalizability of this non‐commutative field theory. The area law for the Wilson loops holds at small physical area as in commutative 2d planar gauge theory, but at large areas we find an oscillating behavior instead. In that regime the phase of the Wilson loop grows linearly with the area. This agrees with the Aharonov‐Bohm effect in the presence of a constant magnetic field, identified with the inverse non‐commutativity parameter. Next we investigate the 3d λϕ4 model with two non‐commutative coordinates and explore its phase diagram. Our results agree with a conjecture by Gubser and Sondhi in d = 4, who predicted that the ordered regime splits into a uniform phase and a phase dominated by stripe patterns. We further present results for the correlators and the dispersion relation. In non‐commutative field theory the Lorentz invariance is explicitly broken, which leads to a deformation of the dispersion relation. In one loop perturbation theory this deformation involves an additional infrared divergent term. Our data agree with this perturbative result. We also confirm the recent observation by Ambjø rn and Catterall that stripes occur even in d = 2, although they imply the spontaneous breaking of the translation symmetry.  相似文献   

15.
16.
When extended supergravity theories with noncompact symmetry groups are written in a physical gauge, the noncompact symmetries join with the supersymmetries to generate an infinite-dimensional algebra. The details are worked out explicitly for a two-dimensional theory with an SU(1, 1) internal symmetry. Our analysis confirms the observation of Ellis et al. that the infinite rigid superalgebra should be obtained from the finite-dimensional local superalgebra by replacing scalar fields with their asymptotic values at infinity. The infinite algebra is described by extending the super-Poincaré generators to functions on the coset space defined by the scalar fields at infinity. While mathematically nontrivial, this result is, in a certain sense, trivial from a physical point of view.  相似文献   

17.
We consider D=3 supersymmetric Chern Simons gauge theories both from the point of view of their formal structure and of their applications to the AdS4/CFT3 correspondence. From the structural view‐point, we use the new formalism of integral forms in superspace that utilizes the rheonomic Lagrangians and the Picture Changing Operators, as an algorithmic tool providing the connection between different approaches to supersymmetric theories. We provide here the generalization to an arbitrary Kähler manifold with arbitrary gauge group and arbitrary superpotential of the rheonomic lagrangian of D=3 matter coupled gauge theories constructed years ago. From the point of view of the AdS4/CFT3 correspondence and more generally of M2‐branes we emphasize the role of the Kähler quotient data in determining the field content and the interactions of the Cherns Simons gauge theory when the transverse space to the brane is a non‐compact Kähler quotient K 4 of some flat variety with respect to a suitable group. The crepant resolutions of singularities fall in this category. In the present paper we anticipate the general scheme how the geometrical data are to be utilized in the construction of the D=3 Chern‐Simons Theory supposedly dual to the corresponding M2‐brane solution.  相似文献   

18.
Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY Yang-Mills theory discretized on the lattice with Wilson fermions (gluinos). They are used in order to compute non-perturbatively a subtracted gluino mass and the mixing coefficient of the SUSY current. The computations were performed at gauge coupling and hopping parameter , 0.194, 0.1955 using the two-step multi-bosonic dynamical-fermion algorithm. Our results are consistent with a scenario where the Ward identities are satisfied up to O(a) effects. The vanishing of the gluino mass occurs at a value of the hopping parameter which is not fully consistent with the estimate based on the chiral phase transition. This suggests that, although SUSY restoration appears to occur close to the continuum limit of the lattice theory, the results are still affected by significant systematic effects. Received: 8 November 2001 / Revised version: 14 January 2001 / Published online: 15 March 2002  相似文献   

19.
In the framework of the minimal supersymmetric standard model we compute the one-loop effective action for the electroweak bosons obtained after integrating out the different sleptons, squarks, neutralinos and charginos, and present the result in terms of the physical sparticle masses. In addition we study the asymptotic behavior of the two-, three- and four-point Green's functions with external electroweak bosons in the limit where the physical sparticle masses are very large in comparison with the electroweak scale. We find that in this limit all the effects produced by the supersymmetric particles can either be absorbed in the standard model parameters and gauge bosons wave functions, or else they are suppressed by inverse powers of the supersymmetric particle masses. This work, therefore, completes the proof of decoupling of the heavy supersymmetric particles from the standard ones in the electroweak bosons effective action and in the sense of the Appelquist–Carazzone theorem; we started this proof in a previous work. From the point of view of effective field theories this work can be seen as a (partial) proof that the SM can indeed be obtained from the MSSM as the quantum low-energy effective theory of the latter when the SUSY spectra are much heavier than the electroweak scale. Received: 27 March 1999 / Revised version: 7 September 1999 / Published online: 27 January 2000  相似文献   

20.
Scalar lattice gauge theories are models for scalar fields with local gauge symmetries. No fundamental gauge fields, or link variables in a lattice regularization, are introduced. The latter rather emerge as collective excitations composed from scalars. For suitable parameters scalar lattice gauge theories lead to confinement, with all continuum observables identical to usual lattice gauge theories. These models or their fermionic counterpart may be helpful for a realization of gauge theories by ultracold atoms. We conclude that the gauge bosons of the standard model of particle physics can arise as collective fields within models formulated for other “fundamental” degrees of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号