首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑电子与声子间相互作用,研究了两种声子库纯初始态(正则系综与粒子数态)下耗散介观电路的动力学特性.长时间极限下(t→∞):当环境处于热平衡态时,电路系统中的电流和电荷的平均值只与电路所处初始量子态中的平均值有关,与环境无关;环境初态为粒子数态时,电荷与电流平均值随时间的演化特性与环境初始处于热平衡态下时完全一样,表明介观电路中的电荷与电流的平均值与环境量子态的某组占有数无关.电路中电流和电荷的量子涨落不仅与系统的初态有关,还与系统所处环境的量子态及温度有关.一般地说,电路系统与环境的纠缠会 关键词: 介观耗散电路 声子库 量子初态 量子态纯度  相似文献   

2.
We investigate nonequilibrium transport in the absence of spin-flip energy relaxation in a few-electron quantum dot artificial atom. Novel nonequilibrium tunneling processes involving high-spin states, which cannot be excited from the ground state because of spin blockade, and other processes involving more than two charge states are observed. These processes cannot be explained by orthodox Coulomb blockade theory. The absence of effective spin relaxation induces considerable fluctuation of the spin, charge, and total energy of the quantum dot. Although these features are revealed clearly by pulse excitation measurements, they are also observed in conventional dc current characteristics of quantum dots.  相似文献   

3.
4.
Quantum mechanical hamiltonian models of turing machines   总被引:7,自引:0,他引:7  
Quantum mechanical Hamiltonian models, which represent an aribtrary but finite number of steps of any Turing machine computation, are constructed here on a finite lattice of spin-1/2 systems. Different regions of the lattice correspond to different components of the Turing machine (plus recording system). Successive states of any machine computation are represented in the model by spin configuration states. Both time-independent and time-dependent Hamiltonian models are constructed here. The time-independent models do not dissipate energy or degrade the system state as they evolve. They operate close to the quantum limit in that the total system energy uncertainty/computation speed is close to the limit given by the time-energy uncertainty relation. However, the model evolution is time global and the Hamiltonian is more complex. The time-dependent models do not degrade the system state. Also they are time local and the Hamiltonian is less complex.  相似文献   

5.
核磁共振系统是实现量子计算的有效物理体系之一.但是随着量子位数的不断增加,运用核磁共振技术实现计算任务存在明显的局限性,原因之一是量子计算的初始态-赝纯态,随着量子位数的增加,信号指数性的衰减,量子位数越多制备赝纯态所需的脉冲序列越复杂,越不容易实现,不利于量子位数的扩展;另外,由于核磁共振中制备的赝纯态实际上也是一种混合态,用于实现量子信息任务时存在一定的争议.该文介绍的利用仲氢诱导极化技术(PHIP)制备出的实验初态,能够解决初态处于混合态的问题,并且信号强度显著增强,作者利用此态实现了 ALTADENA 条件下的两量子位的 Deutsch-Jozsa 量子算法和 PASADENA 条件下的三量子位的Deutsch-Like 量子算法.
  相似文献   

6.
7.
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation.  相似文献   

8.
We investigate the effects of temperature on the properties of the time relaxation to equilibrium and nonequilibrium steady states of correlation functions of some Langevin harmonic systems. We consider commonly used dissipative and conservative Langevin dynamics, and show that the time relaxation rate depends on the temperature in the case of thermal reservoirs at different temperatures connected to the system, but it does not happen in the case of relaxation to equilibrium, i.e., if all the heat bath are at the same temperature. Our formalism maps the initial stochastic problem on a noncanonical quantum field theory, and the calculations of the relaxation rates are based on a perturbative analysis. We argue to show the reliability of the perturbative computation.  相似文献   

9.
Efficient simulations of quantum evolutions of spin-1/2 systems are relevant for ensemble quantum computation as well as in typical NMR experiments. We propose an efficient method to calculate the dynamics of an observable provided that the initial excitation is "local." It resorts to a single entangled pure initial state built as a superposition, with random phases, of the pure elements that compose the mixture. This ensures self-averaging of any observable, drastically reducing the calculation time. The procedure is tested for two representative systems: a spin star (cluster with random long range interactions) and a spin ladder.  相似文献   

10.
Spin relaxation in quantum Hall ferromagnet regimes is studied. As the initial non-equilibrium state, a coherent deviation of the spin system from the B direction is considered and the breakdown of this Goldstone-mode state due to hyperfine coupling to nuclei is analyzed. The relaxation occurring non-exponentially with time is studied in terms of annihilation processes in the “Goldstone condensate” formed by “zero spin excitons”. The relaxation rate is calculated analytically even if the initial deviation is not small. This relaxation channel competes with the relaxation mechanisms due to spin-orbit coupling, and at strong magnetic fields it becomes dominating.  相似文献   

11.
We report on a study of the spin relaxation of a strongly correlated two-dimensional electron gas in the nu=2kappa+1 quantum Hall regime. As the initial state we consider a coherent deviation of the spin system from the B direction and investigate a breakdown of this Goldstone-mode (GM) state due to the spin-orbit coupling and smooth disorder. The relaxation is considered in terms of annihilation processes in the system of spin waves. The problem is solved at an arbitrary value of the deviation. We predict that the GM relaxation occurs nonexponentially with time.  相似文献   

12.
An isolated quantum many-body system in an initial pure state will come to thermal equilibrium if it satisfies the eigenstate thermalization hypothesis (ETH). We consider alternatives to ETH that have been proposed. We first show that von Neumann's quantum ergodic theorem relies on an assumption that is essentially equivalent to ETH. We also investigate whether, following a sudden quench, special classes of pure states can lead to thermal behavior in systems that do not obey ETH, namely, integrable systems. We find examples of this, but only for initial states that obeyed ETH before the quench.  相似文献   

13.
The geometry of the state space of a finite-dimensional quantum mechanical system, with particular reference to four dimensions, is studied. Many novel features, not evident in the two-dimensional space of a single spin, are found. Although the state space is a convex set, it is not a ball, and its boundary contains mixed states in addition to the pure states, which form a low-dimensional submanifold. The appropriate language to describe the role of the observer is that of flag manifolds.  相似文献   

14.
We discuss the possibility of realizing quantum computation on the basis of a cluster of single interacting nuclear spins in solids. This idea seems to be feasible because of the combination of two techniques—Single Molecule Spectroscopy and Optically Detected Electron Nuclear Double Resonance. Compared to the well-known bulk Nuclear Magnetic Resonance (NMR), the proposed method of quantum computation has the advantage that quantum computation is performed with pure spin states and the quantum processor is more easily scalable. At the same time, the advantages of NMR quantum computation are kept: long coherence time and easy construction of quantum gates. As a specific system to implement the above idea, we discuss the 13C-nuclear spins in the nearest vicinity of a single nitrogen-vacancy (NV) defect center in diamond, which can be optically detected using the technique of scanning confocal microscopy. Owing to the hyperfine coupling of the ground state electron paramagnetic spin S=1 of the center to 13C nuclear spins in a diamond lattice, the states of nuclear spins in the vicinity of the defect-center can be addressed individually. Preliminary consideration shows that it should be possible to address up to 12 individual 13C nuclear spins. The dephasing time of the nuclear spin states at low temperatures allows realization up to 105 gates.  相似文献   

15.
We study the dynamics of multipartite quantum correlations measured by the lower bound of concurrence and quantum discord in a three-qubit system coupled to an XY spin chain. For the initial pure GHZ and W state, we find the lower bound of entanglement is more robust than the quantum discord against the decoherence induced by the spin environment. But for the Werner state, the sudden death of discord is not observed even in the presence of entanglement sudden death. By comparing the evolutions for the GHZ and W states, we show that the W state preserves more quantum correlations than the GHZ state. In addition, we put research emphasis on the relation between the dynamics of multipartite quantum correlations and the quantum phase transition of the spin environment.  相似文献   

16.
本文对半导体中的自旋弛豫过程给出一个简要的回顾,介绍了半导体材料从体材料到量子阱、量子线、量子点不同维数的结构中各种自旋弛豫过程,主要关注了自旋去相位和相干控制。对于不同材料中的各种弛豫机制,关注的重点在于如何能够在实验上以一种可以控制的方式来改变可调参数从而达到控制自旋弛豫过程。这些参数主要有电场、磁场、温度、应变、有效g因子等等。本文的组织上,首先介绍研究前景,第1部分简要介绍了自旋弛豫的四种机制。第2部分按照维数的不同将半导体中自旋弛豫分为3个部分:体材料、量子阱、量子线、量子点,在每一部分中又基本上按照电子、空穴、激子的顺序进行了简要的总结:对于不同的载流子,考虑了自旋弛豫对可调参数的依赖关系。这些结果要么试图解释了已有的实验结果,要么从理论上给出预言从而给实验指明了方向,为室温下可以使用的自旋电子学器件设计提供了依据,为固态量子计算和量子信息处理铺平了道路。最后简单地给出展望。  相似文献   

17.
本文对半导体中的自旋弛豫过程给出一个简要的回顾,介绍了半导体材料从体材料到量子阱、量子线、量子点不同维数的结构中各种自旋弛豫过程,主要关注了自旋去相位和相干控制。对于不同材料中的各种弛豫机制,关注的重点在于如何能够在实验上以一种可以控制的方式来改变可调参数从而达到控制自旋弛豫过程。这些参数主要有电场、磁场、温度、应变、有效g因子等等。本文的组织上,首先介绍研究前景,第1部分简要介绍了自旋弛豫的四种机制。第2部分按照维数的不同将半导体中自旋弛豫分为3个部分:体材料、量子阱、量子线、量子点,在每一部分中又基本上按照电子、空穴、激子的顺序进行了简要的总结:对于不同的载流子,考虑了自旋弛豫对可调参数的依赖关系。这些结果要么试图解释了已有的实验结果,要么从理论上给出预言从而给实验指明了方向,为室温下可以使用的自旋电子学器件设计提供了依据,为固态量子计算和量子信息处理铺平了道路。最后简单地给出展望。  相似文献   

18.
19.
In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.  相似文献   

20.
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号