首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over 30 million tons of excess sludge is discharged from rural municipal sewage plants annually in China and it is predicted that this figure will keep increasing. However, most of the excess sludge is dumped in landfills except for minor applications. In this study, based on low-cost and recycling waste, the excess sludge was used to adsorb organic dyes from aqueous solution after being directly dewatered. The powdered excess sludge (PES) presents selective adsorption property to cationic dyes. Statics batch adsorption experiments of malachite green (MG) on PES were performed to evaluate the effects of pH, adsorbent dosage, and initial MG concentration. Results revealed that the bio-adsorption equilibrium of MG on the PES can be quickly achieved at 30 min with maximum percentage adsorption of 84% at pH 7, initial dye concentration of 20 mg L?1, and adsorbent dosage of 1.5 g L?1. Moreover, the adsorption kinetics follows a pseudo-second-order pathway, and the equilibrium adsorption data could be described well by the Langmuir isotherm equation. Intra-particle diffusion is not the only rate-controlling step in the entire adsorption process. The adsorption process is endothermic, spontaneous, and random. PES can be used as a low-cost adsorbent for refractory cationic organic dye in effluent.  相似文献   

2.
3.
The rheological properties of acid hydrolyzed corn stover at high solids concentration (20–35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.  相似文献   

4.
Rheology of microfibrillated cellulose (MFC) water suspensions was characterized with a rotational rheometer, augmented with optical coherence tomography (OCT). To the best of the authors’ knowledge, this is the first time the behavior of MFC in the rheometer gap was characterized by this real-time imaging method. Two concentrations, 0.5 and 1 wt% were used, the latter also with 10?3 and 10?2 M NaCl. The aim was to follow the structure of the suspensions in a rotational rheometer during the measurements and observe wall depletion and other factors that can interfere with the rheological results. The stepped flow measurements were performed using a transparent cylindrical measuring system and combining the optical information to rheological parameters. OCT allows imaging in radial direction from the outer geometry boundary to the inner geometry boundary making both the shear rate profile and the structure of the suspension visible through the rheometer gap. Yield stress and maximum wall stress were determined by start-up of steady shear and logarithmic stress ramp methods and they both reflected in the stepped flow measurements. Above yield stress, floc size was inversely proportional to shear rate. Below the yield stress, flocs adhered to each other and the observed apparent constant shear stress was controlled by flow in the depleted boundary layer. With higher ionic strength (10?2 M NaCl), the combination of yield stress and wall depletion favored the formation of vertical, cylindrical, rotating floc structures (rollers) coupled with a thicker water layer originating at the suspension—inner cylinder boundary at low shear rates.  相似文献   

5.
This study demonstrated that the rheological behavior of mucin, a glycoprotein, mainly depends on the concentration of its dispersions and purity of the sample. Rheological properties were studied under rotational and oscillatory shear and creep curves. The results showed that mucin dispersions display non-Newtonian behavior of the shear thinning type. The mucin dispersion showed an apparent viscosity ranging from 0.22 to 29.29 Pa.s; at 10% concentration it formed macromolecular solutions with G″>G′; these showed viscoelastic liquid behavior, while at 40% it showed viscoelastic solid behavior, characteristic of weak gels, G′>G″. Atomic force microscopy revealed topographical differences on the commercial mucin surface, as in non-purified and purified mucin gels.  相似文献   

6.
Effects of xanthan gum (XG) (0.1 wt%) and pectin (PE) (0.5 wt%) alone and in combination with different concentrations (0.2 and 0.4 wt%) of locust bean gum (LBG), modified starch (MS), and Na-alginate (ALG) on some of the rheological characteristics of low-fat spreads, including flow behavior curves, rheological modeling, apparent viscosity, rheological modules (storage modulus (G′) and loss modulus (G″)), and delta degree (G″/G′) were studied. Results showed the power-law model was better than the Herschel–Bulkley model to describe the flow curve of dispersions. The k-value in the power-law model increased with increase in biopolymers concentration in solution. All samples exhibited shear-thinning flow behavior with a low yield stress. Dynamic oscillatory shear test showed that the spreads had a viscoelastic solid behavior with a gel-like structure. The G′ value was increased by increasing frequency from 0.03 to 15 Hz, while the G″ and G″/G′ values decreased. Also, MS in combination with XG and PE led to increase the G′ values of spreads in comparison with ALG and LBG. Moreover, microstructural and stability observations revealed that the spreads prepared with 0.1% XG-0.2% LBG significantly had the highest oiling out.  相似文献   

7.
Abstract

A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100?°C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5?Pa and 9.8?Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56?Pa and 11.57?Pa respectively, which is quite interesting from reservoir engineering viewpoint. Equilibrium Swelling Ratio (ESR) of the nanocomposite polymer gel in sea water and formation water decreases as the concentration of the SiO2 increases. Thermal stability of the polymer gel is investigated by differential scanning calorimetry (DSC) measurements. The inflexion temperature of the polymer gel is improved by incorporation of 2000?ppm SiO2 nanoparticles. The fabricated polymer gel nanocomposite in this work can have potential application in reduction of excess water production during enhanced oil recovery (EOR) operations in petroleum industry.  相似文献   

8.
In this work, the influence of cellulose nanofibers (CNFs) on the rheological behavior of silica-based shear-thickening fluid (STF) is investigated. CNFs of 150–200 nm in diameter were extracted from cotton fibers using a supermasscolloider. CNF-reinforced STF of different concentrations (0.1–0.3 wt.%) was prepared via an ultrasonication technique. The presence of CNFs and their interaction with the silica nanoparticles in the STF were analyzed using SEM and FTIR. The addition of a minute quantity of CNF to the STF (0.3% CNF-reinforced STF) caused a marked increase in the peak viscosity, from 36.8 (unmodified STF) to 139.0 Pa s (0.2% CNF-reinforced STF), and a concomitant decrease in the critical shear rate from 33.45 to 14.8 s?1 . The presence of a large number of hydroxyl groups on the CNFs enhanced their interaction with the nanoparticles via hydrogen bonding, which induced shear thickening. The mechanism of the interaction between silica nanoparticles and CNF was also demonstrated. Oscillatory dynamic rheological analysis showed that the addition of even a small amount of CNF led to higher elastic behavior in the system at lower shear rates. In contrast, a more viscous nature was demonstrated at higher angular frequencies. As the concentration of  nanofibers in the STFs increased, the crossover point between storage and loss modulus shifted to higher angular frequencies, implying stronger interaction between the constituents of the STF. The dynamic viscosity profile of all samples also exhibited shear-thickening behavior.  相似文献   

9.
Colloidal crystallization of highly monodisperse spindle-shaped hematite particles coated with poly(poly(ethylene oxide) methyl ether methacrylate) brush (SHB) was studied by reflection spectroscopy and optical microscopy. SHB suspensions were deionized exhaustively with the mixtures of cation- and anion-exchange resins more than 6 months. The liquid thin film along the vertical cell wall above the horizontal air–liquid interface showed the strong color bands. Furthermore, the reflection spectra composed of many sharp peaks shifted continuously toward shorter wavelengths with time. These observations support the presence of thin film of SHB suspension, where the width is thickened downward by the gravity and the layered liquid further flow downward with time. The rigidities of SHB crystals in the bulk phase estimated from the optical microscopy in the sedimentation equilibrium were 0.007 to 0.7 Pa as SHB concentration increased from 0.006 to 0.35 wt.%. The fluctuation parameter, b-factors of the anisotropic crystals, was from 0.025 to 0.035 and decreased slightly as particle concentration increased. Rigidities and the fluctuation parameters of SHB suspensions support that the elastic properties of the anisotropic-shaped colloidal crystals are close to those of typical crystals of colloidal spheres. Compression of the SHB crystals by the gravity is also suggested in the sedimentation equilibrium state.  相似文献   

10.
The influence of synergistic interaction between sodium dodecylsulfate (SDS) and N,N-dimethyldodecan-1-amine oxide (DDAO) on their adsorption at air/water and solid/water interfaces at 20°C is investigated. The critical micelle concentration values obtained from surface tension measurements indicated strong synergism between SDS and DDAO, according to regular solution model. The excess surface concentration (Γ) and the minimum occupied area by single and mixed surfactant monomers (Amin) at liquid/air interface were also calculated. The adsorption onto the activated charcoal and silica was then measured to find out the correlation between surfactant synergism and their adsorption at solid/water interface. The amounts of surfactant adsorbed onto 1 wt% activated charcoal follow the trend: SDS/DDAO > DDAO > SDS. SDS molecules do not adsorb onto 5 wt% silica substrate, while SDS/DDAO mixed system was found to have the highest adsorption behavior. The obtained indicate that SDS can be removed from water by mixing it with amphoteric surfactant.  相似文献   

11.
A methane production system with continuous stirred-tank reactor, rumen liquid as inoculate microorganisms, and paper mill excess sludge (PES) as feedstock was studied. The work mainly focused on revealing the effect of feedstock concentration on the biogas production, which was seldom reported previously for the current system. The optimal fermentation conditions were found as follows: pH = 7, T = 39 ± 1 °C, sludge retention time is 20 days, sludge with total solids (TS) are 1, 2, 3.5, 5, 10, and 13% in weight. Daily gas yields were measured, and biogas compositions were analyzed by gas chromatograph. Under such conditions, the optimum input TS was 10 wt%, and the biogas yield and volume gas productivity were 280.2 mL/g·TS and 1188.4 mL L?1·d?1, respectively. The proportions of CH4 and CO2 in the biogas were 65.1 and 34.2%. The CH4 yield reached 182.7 mL/g VS (volatile suspended solid), which was higher than previously reported values. The findings of this work have a significant effect on promoting the application of digesting PES by rumen microorganisms and further identified the technical parameter.  相似文献   

12.
A solid phase extraction method is established for preconcentration of nickel, lead, cadmium, copper and cobalt using pipette tip solid phase extraction. The presented process was dependent on chelation of analytes with 1,3,4-thiadiazole-2,5-dithiol, then allowing the solution to flow through an activated carbon cloth packed pipette tip. The adsorbed metal chelates on the surface of activated carbon cloth were eluted by 5 mL of 3 M HNO3. The concentrations of nickel, lead, cadmium, copper and cobalt were detected using a flame atomic absorption spectrometer (FAAS). The pipette tip solid phase extraction exhibit a preconcentration factor of 120. The limit of detection values were 2.7, 1.7, 1.3, 2.0 and 2.9 µg L?1 for Ni(II), Pb(II), Cd(II), Cu(II) and Co(II), respectively. Validation of the method was checked by the analysis of TMDA-53.3 and TMDA-64.2 certified reference materials. The method was successfully applied for water and fertiliser samples.  相似文献   

13.
Aqueous colloidal forming of magnesium aluminate (MgAl2O4) spinel offers much potential for various applications; however, these advantages are generally offset by the basic nature of the powder and its affinity for hydrolysis. Hydrolysis in the presence of water generally imparts surface chemical changes resulting in the degradation of colloidal stability. In the present study, spinel powders were subjected to thermally assisted surface passivation and evaluated for the effectiveness of preventing hydrolysis through quasielastic neutron scattering (QENS) technique and correlated with rheological measurements. In order to evaluate the extent of hydrolysis, spinel slurries prepared with (SP) and without surface passivation (WSP) were studied by rheological and QENS measurements at regular intervals of time. While WSP slurry exhibited a steep enhancement in viscosity from 1.02 to 19.4 Pa · s and fraction of the elastic intensity from 0.20 to 0.38 for 96 and 200 hours, respectively, a negligible change in viscosity for SP slurries from 0.313 to 0.345 Pa · s and fraction of the elastic intensity from 0.16 to 0.17 for the similar period confirmed the inhibition of hydrolysis, revealing change in surface chemistry due to hydrolysis. Microscopic details as obtained from neutron scattering data revealed that dynamical behavior of water molecules in both the slurries could be described very well by the Singwi–Sjolander model of jump diffusion. Further analysis showed lower diffusivity ~1.82 × 10?5 cm2/sec and higher residence time ~6.39 ps for WSP slurry in comparison with 2.16 × 10?5 cm2/sec and 5.80 ps, complimenting the inhibition of hydrolysis in case of SP slurry.  相似文献   

14.
Nanofluids are prepared by suspending the nanoparticles in the base fluid and can be substantially enhanced the heat transfer rate compared to the pure fluids. In this paper, experimental investigation of the effects of volume concentration and temperature on dynamic viscosity of the hybrid nanofluid of multi-walled carbon nanotubes and aluminum oxide in a mixture of water (80%) and ethylene-glycol (20%) has been presented. The nanofluid was prepared with solid volume fractions between 0.0625 and 1%, and experiments were performed in the temperature range of 25–50 °C. The measurement results at different shear rates showed that the base fluid and nanofluid samples with solid volume fractions of less than 0.5% had Newtonian behavior, while those with higher solid volume fractions (0.75 and 1%) exhibit a pseudoplastic rheological behavior with a power law index of less than unity. The results showed that viscosity has a direct relationship with solid volume fraction of the nanofluid. The value of maximum enhancement is which occurred in 25 °C. Moreover, the consistency index and power law index have been obtained by accurate curve fitting for samples with non-Newtonian behavior of nanofluids. The results also revealed that the apparent viscosity generally increases with an increase in the solid volume fraction.  相似文献   

15.
《Analytical letters》2012,45(17):2715-2722
Electronic cigarettes are a relatively new form of nicotine delivery and their popularity is increasing rapidly. One concern regarding the safety of electronic cigarette is quality control during their manufacture, including whether the nicotine concentration matches the labelling. An assay was developed to evaluate the concentration of nicotine in electronic cigarette cartridges. For nicotine extraction, the pad was removed from the cartridge. Deuterated nicotine solution (1 µg), used as the external standard, was added to the pad and allowed to penetrate into the matrix. The pad was treated with 50 mL of 50% (v/v) methanol/deionized water in an ultrasonic bath for fifteen minutes at ambient temperature. After sonication, the extract was further diluted with deionized water and then analyzed by ultra-high performance liquid chromatography–tandem mass spectrometry. The recovery of nicotine-d4 was 81.5 ± 3.7%. Based on the recovery, the nicotine concentration in the electronic cigarette cartridges was 11.9 ± 1.3 mg, which was lower than the labelled concentration (16 mg). The nicotine concentration did not vary significantly between cartridges within one pack or between packs. The nicotine concentration in the electronic cigarette cartridges was determined by this assay. Differences between labelled and actual nicotine concentrations may affect clinical trials.  相似文献   

16.
The potential of Fe(II)-activated peroxymonosulfate (Fe(II)-PMS) oxidation under mild temperature applied to pretreat waste activated sludge (WAS) was investigated in this work. The reciprocal ratio of capillary suction time to its initial value (CST0/CST) was used to characterize sludge dewaterability. The optimal conditions were Fe(II) 0.6 mmol g?1 VSS, PMS 1.0 mmol g?1 VSS, and temperature 60 °C, under which a high value of CST0/CST was obtained to be 14.0 with a CST reduction rate of 92.9%. The enhancement of sludge dewaterability was mainly contributed from the remarkable increase of the negative zeta potential and the significant decrease of extracellular polymeric substances (EPS) (especially for protein). It was further observed that Fe(II)-PMS oxidation under mild temperature was beneficial to sludge disintegration in terms of VSS reduction and the concentrations of total organic carbon (TOC) and total nitrogen (TN) in the supernatant after treatment. Therefore, Fe(II)-PMS oxidation under mild temperature is a feasible and efficient alternative technology for sludge pretreatment.  相似文献   

17.
Viscoelastic wormlike micelles have attracted special interests over the past decade due to their unique rheological response. Few efforts were however devoted to the rheological properties of worms in high-salinity solution. Here, worm-containing viscoelastic fluid is designed from single N-erucamidopropyl-N,N-dimethyl carboxybetaine (EMAB), using brine water (total dissolved solids: 32,868 mg L?1; [Ca2+] + [Mg2+]: 873 mg L?1) as solvent. Upon increasing concentration, EMAB brine solution shows remarkable macroscopic viscoelasticity above a low overlapping concentration (0.04 wt%) without adding special hydrotropes, implying a giant 3D network-like entanglement formation. Such a viscoelastic network aggregates exhibit thermo-induced thickening behavior in a comparable temperature range due to the hydrogen bond interaction, and excellent thermal stability. The apparent viscosity at 170 s?1 can keep above 50 mPa · s at 130°C for 2 hours. These preliminary results will give EMAB a rich prospective for use as rheological modifier, especially for using in some extremely environment such high temperature, high salinity, and high shear.  相似文献   

18.
Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2–8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C4, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH4/gVS compared to 105 mlCH4/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH4/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.  相似文献   

19.
In this present work, effect of Al/water nanofluids on the rheological performance of an automobile car radiator has been investigated. Nanofluids were fabricated by two-step methods, i.e., dispersing of aluminum metal bases nanoparticles of size 75–135 nm in double-distilled water. Experiments were conducted on single-pass cross-flow compact heat exchanger by varying the various parameters such as inlet temperature, flow rate through the heat exchanger, concentration of nanoparticles and velocity of air employed for cooling purpose. It was concluded that the hot side Nusselt numbers are improved by 3.37 and 5.0877% for 0.2 and 0.3% concentrations of nanofluids, respectively, at 318.15 K inlet fluids temperature as compared to base fluids. Colburn factor was increased by 12.94 and 23.45% for 0.2 and 0.3% nanoparticles volume concentration of nanofluids, respectively, at 318.15 K inlet temperature with respect to double-distilled water. Hot fluid side friction factor was increased by 14.04 and 20.916% for 0.2 and 0.3% nanoparticles volume concentration of nanofluids with respect to base fluids, but this average value of friction factor was decreased by 2.29 and 9.1412% when temperature was increased from 318.15 to 323.15 K and 328.15 K, respectively.  相似文献   

20.
Carbopol gel systems have been studied using steady, oscillatory rheology, and cryoscanning electron microscopy (cryo-SEM) analysis in order to elucidate the nature of the different microstructures of the gel in relation to polymer concentration as well as triethanolamine (TEA) content. The effect of changing the concentration of Carbopol (0.1–4 wt%) for 0, 1, and 10 wt% TEA has been investigated. Cryo-SEM revealed that honeycomb structures were observed in the gel system depending on the amount of TEA and Carbopol while the irregular fibrous three dimensional gel network systems were seen at the lower level of polymer content even in the high concentration of TEA. In addition to that, as the amount of polymer was increased, strings of fibrous network became thicker and of honeycomb-like structure. Shape of storage modulus-shear stress curve in the dynamical rheometric study was significantly changed as a result of variation in the microstructures while frequency sweep curve and yield values obtained from the model fitting in the steady rheological measurements couldn't reflect the structural difference of Carbopol gels. Two distinct relaxation phenomena were appeared with increase in polymer concentration as well as TEA concentration. Temperature dependence of the stress sweep experiment was measured and shown that the effect of temperature (1–80 °C) on the shape of the curve was the similar trend with that of TEA and polymer concentrations, although the temperature dependency on the increment was much weaker than TEA concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号