首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the oligomerization of a butene mixture composed of 1-butene, cis-2-butene and trans-2-butene over several types of zeolites in a fixed-bed catalytic reactor at an elevated pressure was studied to produce hydrocarbons in the jet fuel range (C8–C16). Three types of zeolites, HZSM-5, Hβ and HY, were compared to evaluate the performance during the synthesis of jet fuel via the oligomerization of the aforementioned butene mixture. Compared to HY and Hβ, HZSM-5 showed a very stable butene conversion rate with high selectivity to jet-fuel-range hydrocarbon, which could be attributed to high resistance to coke resulting from the pore structure. HZSM-5 (50) shows the best quantitative conversion performance and yield for jet fuel for a time-on-stream of up to 6 h. It was also noted that the branched-to-linear hydrocarbon ratio reached 8.7 over the HZSM-5 (50) catalyst, which is beneficial to improve the cold properties of jet fuel. The present study reveals that HZSM-5 (50) is a potential catalyst for jet fuel synthesis through the oligomerization of butene mixture, exhibiting high stability and a high yield.  相似文献   

2.
As a result of investigating low temperature isomerization of n-hexane at 130, 140, 150, 160°C in a flow reactor with a fixed bed of catalyst of the Al2O3/ZrO2/SO4/Pt type a ratio of components in the catalyst system was selected and process conditions were defined, which allow to obtain highly branched high-octane isomers with a yield of up to 40% relative to a transformed raw material. A kinetic model of the process was proposed and kinetic parameters were calculated.  相似文献   

3.
The catalytic, deactivation, and regeneration characteristics of large coffin‐shaped H‐ZSM‐5 crystals were investigated during the methanol‐to‐hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas‐phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin‐shaped zeolite H‐ZSM‐5 crystals in a fixed‐bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization‐dependent UV‐visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time‐of‐flight secondary‐ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed‐bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2/inert gas mixtures at 550 °C. UV‐visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H‐ZSM‐5 deactivated more rapidly at higher reaction temperature.  相似文献   

4.
Hydrogen production for fuel cells via on-board steam reforming of methanol is a promising approach. In this study, an ammonium carbonate-assisted mechanochemical procedure has been developed for Cu-based catalyst synthesis for SRM. Catalytic performance in SRM was evaluated in a fixed bed reactor at varied conditions, and physical and structure properties of the catalysts were characterized by N2 adsorption-desorption, N2O titration, SEM, H2-TPR, XRD and TG, etc. Mechanical milled samples exhibited a porous structure that differed from that of the catalyst prepared by conventional impregnation. The SRM activity was enhanced for the strong interaction between copper ions and the copper aluminate formed on the ball-milled catalysts. Cu1Zn3Al6 exhibited the worst in activity, which could be ascribed to the poor metal dispersion. Cu–Al spinel in the catalysts plays an important role in the catalytic stability, which has prevented Cu from quick sintering in SRM, and the ball-milled catalysts have exhibited a slight deactivation with the time-on-stream of 25 ?h.  相似文献   

5.
This study evaluated the production of hydrogen and propionic acid in an expanded granular sludge bed (EGSB) reactor by co-fermentation of cheese whey (CW) and crude glycerol (CG). The reactor was operated at hydraulic retention time (HRT) of 8 h by changing the CW/CG ratio from 5:1 to 5:2, 5:3, 5:4, and 5:5. At the ratio of 5:5, HRT was reduced from 8 to 0.5 h. The maximum hydrogen yield of 0.120 mmol H2 g COD?1 was observed at the CW/CG ratio of 5:1. Increasing the CG concentration repressed hydrogen production in favor of propionic acid, with a maximum yield of 6.19 mmol HPr g COD?1 at the CW/CG ratio of 5:3. Moreover, by reducing HRT of 8 to 0.5 h, the hydrogen production rate was increased to a maximum value of 42.5 mL H2 h?1 L?1at HRT of 0.5 h. The major metabolites were propionate, 1,3-propanediol, acetate, butyrate, and lactate.  相似文献   

6.
The effects of the Ni loading, total feed flow rate, prereduction temperature, reaction temperature and feed gas ratio for combination of CO2 reforming and partial oxidation of CH4 over Ni/Al2O3 were investigated using a fluidized bed reactor. Methane conversion to syngas was drastically enhanced using a fluidized bed reactor over Ni/Al2O3 catalyst calcined at high temperature. The fluidized bed and the fixed bed reactor were compared and a promoting mechanism of the fluidized bed reactor was proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In this paper, a new catalyst system Cu‐Mn‐(M)/γ‐Al2O3 was developed for the directly synthesis dimethyl ether (DME) from synthesis gas in a fixed‐bed reactor. The catalysts with different n (Cu) : n (Mn) ratios, several promoter M (M is one of Zn, Cr, W, Mo, Fe, Co or Ni) were prepared and tested. The results showed the catalysts have a high conversion of CO and a high DME selectivity. The DME yield in tail gas reached 46.0% (at 63.27% conversion of CO) at 2.0 MPa, 275°C, 1500 h?1 with the Cu2Mn4Zn/γ‐Al2O3 catalyst.  相似文献   

8.
The catalytic conversion of methane and carbon dioxide was studied in a fluidized bed reactor supported by a 13.56?Hz driven coaxial DBD-reactor. Palladium or cupper catalyst which are covered on Al2O3 particles were used. The goal was to test whether biogas can be used for the production of synthesis gas. The influences of discharge power, catalysts and temperature of the catalyst bed on the product yield were studied. The starting material and product stream was analyzed by quadrupole mass spectrometry and infrared spectroscopy. H2/CO ratios can be adjusted in a range between 0.65 (without a catalyst) and 1.75 (using a copper catalyst). The process is highly selective for hydrogen production (up to 83%, using a Palladium catalyst). A copper catalyst increases the H2/CO ratio can from 1.04 to 1.16 and the palladium catalyst from 1.11 to 1.43 by heating the catalyst to a temperature of 250°C.  相似文献   

9.
Production of middle distillate (C10–C20) from synthesis gas (CO + H2) through hydrocracking of wax (>C21+) was carried out in a dual-bed reactor. Fischer–Tropsch catalyst (Co/TiO2) was used in the first-bed reactor to produce wax from synthesis gas, and a mesoporous Pd–alumina composite catalyst (Pd–Al2O3) was used in the second-bed reactor to produce middle distillate through hydrocracking of wax. Both Fischer–Tropsch synthesis function of Co/TiO2 catalyst and hydrocracking function of Pd–Al2O3 catalyst were deactivated during 100 h-hybrid Fischer–Tropsch synthesis reaction. It was revealed that deactivation behaviors of Co/TiO2 and Pd–Al2O3 catalysts were governed by different factors. Wax accumulation and Co sintering were responsible for deactivation of Co/TiO2 catalyst in the Fischer–Tropsch synthesis reaction. Loss of Pd dispersion and Pd surface area of Pd–Al2O3 catalyst was responsible for its decreased catalytic performance in the production of middle distillate through hydrocracking of wax.  相似文献   

10.
Spherical mesoporous silica–alumina aerogel like beads based on sol–gel technology and the drop wise addition have been synthesized and used as catalyst support for phosphotungstic acid (PWA). Their catalytic performances in the isopropylation of naphthalene with isopropanol were investigated in a batch reactor. It was found that PWA was highly dispersed on the silica–alumina support and their Keggin structure can be retained. In addition, PWA/SiO2–Al2O3 catalyst showed high surface area, both of Lewis acid sites and Brönsted acid sites. Because of having more Brönsted acid sites, silica–alumina supported acid catalysts showed much higher conversion (87.97 %) and selectivity to diisopropylnaphthalenes (41.41 %) and β,β-products (59.82 %) than pure acid and reactive supports in the isopropylation of naphthalene. The catalytic behavior has been discussed in relation with the physical chemical properties of catalysts, reaction and activation temperature and reaction time.  相似文献   

11.
An efficient one-pot synthesis of 2,3-dihydroquinazoline-4(1H)-one derivatives 4a–l is described using SBA-Pr-SO3H as a heterogeneous acid catalyst. The present methodology resulted in various derivatives of 2,3-dihydroquinazoline-4(1H)-one in good yield via a three-component reaction of isatoic anhydride, aldehydes and ammonium acetate. SBA-Pr-SO3H played a significant role as an efficient mesoporous catalyst due to its pore size of 6 nm. Additionally, UV–Vis spectrum of the products was studied in order to investigate their application as UV absorbers.  相似文献   

12.
An in situ bimolecular reaction, in which syngas is fed with toluene as a secondary reactant (hereafter Tol in situ methylation), was studied over bifunctional catalysts comprised of methanol synthesis catalyst and H-ZSM-5 in a fixed-bed down-flow reactor at 460 psig. When physically mixed with H-ZSM-5 to form bifunctional catalysts, CrZ_HZ (Cr2O3/ZnO + HZSM-5) catalyst showed much higher activity than CZA_HZ (CuO/ZnO/Al2O3 + H-ZSM-5) in the Tol in situ methylation, while CrZ catalyst exhibited substantially lower activity than CZA in methanol synthesis. CO conversion to methanol in the Tol in situ methylation was estimated by Bz in situ methylation. The CO conversion to methanol was calculated to be in the range of 11–27 %, while that in methanol synthesis over CrZ was about 5 % at most due to chemical equilibrium limitation. By employing a silicalite-coated H-ZSM-5 (Sil/HZ) in bifunctional catalyst, xylene selectivity and para-xylene yield were much improved in the Tol in situ methylation.  相似文献   

13.
Three bidentate salicylaldimine nickel complexes containing different long-chain alkyl groups in their ligand backbone were synthesized in good yield. All the bidentate salicylaldimine ligands and their nickel complexes were fully characterized by FT-IR, 1H NMR, UV spectroscopies, and mass spectrometry. Three bidentate nickel complexes were evaluated as catalyst precursors in ethylene oligomerization. Upon activation with methylaluminoxane (MAO), the catalytic activity was 5.75 × 105 g/(mol Ni·h) and the oligomers were mainly butenes (52.10%) and octenes (32.63%) for bidentate nickel complex with 1-tetradecyl as core in the ligand backbone (R14-complex) using toluene as solvent. However, bidentate nickel complex with 1-octadecyl as core in the ligand backbone (R18-complex) produced mainly octenes (59.38%) and C10 + olefins (29.01%) and the catalytic activity was 2.23 × 105 g/(mol Ni·h). After activation with ethylaluminum sesquichloride (EASC) in toluene, three nickel complexes yielded mainly C10 + products which contained Friedel-Craft alkylated-toluene, and their catalytic activities were above 1.5 × 106 g/(mol Ni·h). For the bidentate salicylaldimine nickel catalysts with hyperbranched molecules as ligand backbones, the solvent and the reaction conditions had a large effect on catalytic activity as well as oligomerization distribution except the structure of the catalyst and the co-catalyst.  相似文献   

14.
The specifics of CO hydrogenation over a 5%Ru/Al2O3 catalyst in a flow reactor at a pressure of 1.5 MPa has been considered. The feed gas mixture has been composed of (vol %) 30.5 CO, 2.3 CO2, 65 H2, and N2 as the rest. The CO methanation reaction readily passes to the external-diffusion regime—catalyst surface ignition (CSI) mode—either by heating the catalyst in the reaction medium or by replacing H2 with the reactant gas having a temperature above the critical ignition temperature. On passing to the CSI mode, the temperature at the entrance to the catalyst bed and the methane content at the reactor outlet abruptly increase, the yield of CO2 produced via the water-gas shift reaction increases, and the CO content drops to zero. Under the CSI regime, temperature oscillations with a period of 3–5 min and an amplitude of ~3°C are observed, which are sustained during catalyst cooling until the extinction of the reaction. A comparison of the product compositions at the reactor outlet in the cases of the “thick” (20 mm) and “thin”(3 mm) catalyst bed has shown that the reverse water-gas shift, an endothermic reaction, occurs in lower, colder layers of the thick bed. As a result, the extinction of the reaction is faster in the thick than in the thin bed. Methanation of CO is accompanied by the Fischer-Tropsch reaction: a variety of carbon compounds are formed with their yield being decreased on passing to the CSI mode.  相似文献   

15.
The vapor‐phase reaction of citronellal (CTN) at 220 °C and atmospheric pressure has been studied using mesoporous molecular sieves and zeolites in a fixed‐bed reactor. The primary products included isopulegol (IPG), menthone, and pulegol with subsequent reactions to form cyclic hydrocarbons. The CTN conversion and the product selectivity depend on the acidity and the textural property of catalysts. Lewis and/or Brönsted acid sites are essential for catalyzing this reaction. An increase of SiO2/Al2O3 mol ratio diminishes the acid amount of all catalysts and enhances both the surface area and the structural order of MCM‐41. The catalytic activity follows the order of MCM‐41 > HZSM‐5 > Hβ > USY, in accordance with the relative total acid amount except that of MCM‐41. Despite its low acidity, Si‐MCM‐41 exhibits the best catalytic performance due to its uniform mesopores, large surface area and good stability; the CTN conversion and the IPG yield attain 91.9% and 58.6%, respectively, after at least 25 h time‐on‐stream.  相似文献   

16.
The liquid phase acylation of 2-methylfuran with acetic anhydride over modified Hβ zeolite was first conducted in a continuous flow reactor. The deactivation of Hβ zeolites was attributed to strong adsorption of reactants or products and was verified by GC–MS and 13C MAS NMR. Deactivated zeolites can be regenerated to their original state by calcination. The acidic properties was adjusted by surface modification on Hβ, the maximum yield of 89.5 mol% and selectivity of 100 % were obtained over tartaric acid modified by Hβ. The deposition of tetraethoxysilane to silica on Hβ contributed to enhancing the catalytic stability. Combined with the results of NH3-TPD and Py-FTIR, the amount of Broensted acids played a major role on catalytic activity. A close relationship between the catalytic stability and the ratio of the amount of strong to weak acids at 1:1 was highlighted here. The solvents' effect on the catalytic performances was examined, and 1,2-dichloroethane with moderate polarity exerted a positive effect on catalytic stability.  相似文献   

17.
在甲烷氧化偶联反应中,采用了一种薄层环形固定床反应器,这种反应器有利于反应热的转移。在环形固定床反应器中进行的MgO/BaCO3催化剂稳定性试验结果表明,催化剂在500h试验中一直保持较高的活性。在CH4:O2:H2O=5:1:2.3,CH4的GHSV为5700h-1的条件下,得到甲烷转化率为26%,C2烃收率为17.3%,C2选择性为67.5%;水蒸汽作为稀释气引入反应中,可分散和带走催化剂床层过多的反应热,减小床层温差。XRD结果表明,反应后的催化剂与新鲜催化剂的结构基本一致,催化剂具有稳定催化活性的原因,应归属于其结构的稳定性和具有一定的抗水蒸汽性能。  相似文献   

18.
The aim of this study was to investigate the effect of the support material used for biomass attachment and bed porosity on the potential generation of hydrogen gas in an anaerobic bioreactor treating low-strength wastewater. For this purpose, an upflow anaerobic packed-bed (UAPB) reactor fed with sucrose-based synthetic wastewater was used. Three reactors with various support materials (expanded clay, vegetal coal, and low-density polyethylene) were operated for hydraulic retention time (HRT) of 0.5 and 2 h. Based on the results obtained, three further reactors were operated with low-density polyethylene as a material support using various bed porosities (91, 75, and 50 %) for an HRT of 0.5 h. The UAPB reactor was found to be a feasible technology for hydrogen production, reaching a maximum substrate-based hydrogen yield of 7 mol H2 mol?1 sucrose for an HRT of 0.5 h. The type of support material used did not affect hydrogen production or the microbial population inside the reactor. Increasing the bed porosity to 91 % provided a continuous and cyclic production of hydrogen, whereas the lower bed porosities resulted in a reduced time of hydrogen production due to biomass accumulation, which resulted in a decreasing working volume.  相似文献   

19.
The Beckmann rearrangement of cyclohexanone oxime (CHO) to ?‐caprolactam (?‐C) was studied in a plug flow reactor at 300–400°C under atmospheric pressure by using Hβ, ZSM‐5, and alumina pillared montmorillonite. With Hβ(X) Y zeolites, raising the SiO2/Al2O3 molar ratio (X) results in the enhancement of catalyst acid strength with concomitant decrease of the total acid amount. In creasing the calcination temperature (Y) causes remarkable diminution of catalyst surface area, acid strength, and acid amount. A similar trend was found for AlPMY catalysts. In there action of CHO, the initial catalytic activity correlates well with the total acid amount of various catalysts except for Hβ(10) Y (Y > 600°C). The reaction proceeds on both Brönsted and Lewis acid sites and the catalyst deactivation most likely occurs at the strong Brönsted acid sites. The effect of solvents in the feed on the catalytic results was also investigated; it was found that polar solvents such as ethanol or n‐butanol give high ?‐C yield and longer catalyst life time. In the reaction of CHO/C2H5OH over Hβ(10)800 at 400°C and W/F 74.6 gh/mol, the CHO conversion and ?‐C yield remain 100% and 92%, respectively, for at least 20 h time‐on‐stream. The reaction paths and the mechanism for ?‐C formation are proposed.  相似文献   

20.
An in situ pyrolysis process of high moisture content lignite in an autogenerated steam agent was proposed. The aim is to utilize steam autogenerated from lignite moisture as a reactant to produce fuel gas and additional hydrogen. Thermogravimetric analysis revealed that mass loss and maximum mass loss rate increased with the rise of heating rates. The in situ pyrolysis process was performed in a screw kiln reactor to investigate the effects of moisture content and reactor temperature on product yields, gas compositions, and pyrolysis performance. The results demonstrated that inherent moisture in lignite had a significant influence on the product yield. The pyrolysis of L R (raw lignite with a moisture content of 36.9 %, wet basis) at 900 °C exhibited higher dry yield of 33.67 mL g?1 and H2 content of 50.3 vol% than those from the pyrolysis of the predried lignite. It was also shown that increasing reaction temperature led to a rising dry gas yield and H2 yield. The pyrolysis of L R showed the maximum dry yield of 33.7 mL g?1 and H2 content of 53.2 vol% at 1,000 °C. The LHV of fuel gas ranged from 18.45 to 14.38 MJ Nm?3 when the reactor temperature increased from 600 to 1,000 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号