首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Journal of Sol-Gel Science and Technology - Halloysite Nanotubes (HNTs) with large surface/volume ratio and rich reactive groups are incorporated into Fe-based MOF aerogel to develop MOF(Fe)/HNTs...  相似文献   

3.
In this work, we investigated the influence of annealing on the crystallinity, microstructures, and photoluminescence (PL) properties of ZnO nanoparticles prepared by sol–gel method. The annealing was carried out both in air and vacuum. X-ray powder diffraction, scanning electron microscopy, and ultraviolet–visible spectroscopy were used to characterize the crystal structures, diameter, surface morphology, and PL properties of ZnO nanoparticles. It has been found that both the as-grown and annealed ZnO nanoparticles had a hexagonal wurtzite crystal structure, and their average diameter and crystallinity increased with the anneal time and temperature. Pure blue-emitting behavior was observed in all samples. The emission intensity of ZnO nanoparticles was found to be enhanced after annealing, but it was highly dependent on the annealing conditions. Optimal annealing conditions both in air and vacuum were obtained for achieving maximum emission intensity in the ZnO nanoparticles. The dependence of PL properties of the ZnO nanoparticles on the annealing conditions was discussed.  相似文献   

4.
Cubic, tetragonal and monoclinic Gd-doped zirconia nanoparticles with nominal composition GdxZr1?xO2 in the range 0 ≤ x ≤ 0.2, were prepared by annealing dried gels of Gd-containing zirconia at temperatures over the range between 450 and 1,300 °C. The synthesized zirconia-based nanoparticles with increased gadolinium load were characterized by X-ray powder diffraction, infrared and Raman spectroscopies, and transmission electron microscopy. The stabilization of the crystalline forms of Gd-doped ZrO2 solid solutions depends on the amount of Gd dopant and the annealing temperature. For low Gd loads in GdxZr1?xO2 being x < 0.05, the tetragonal form is the single phase up to 1,100 °C, whereas the monoclinic is the crystalline form detected up to 1,300 °C. Within the range of compositions 0.05 ≤ x < 0.1, is the tetragonal the only stabilized zirconia crystalline structure over the whole range of temperature up to 1,300 °C. For higher Gd-contents, in the range 0.1 ≤ x ≤ 0.2, is the cubic zirconia form the only stable phase for the whole range of annealing temperatures. Solid-state electrochemistry of the gadolinium-doped zirconia performed by the voltammetry of microparticles approach allowed distinguishing different electrochemical answers of Gd cation associated with slightly different local coordination surrounding of cations. Enantioselective electrocatalytic effect of monoclinic Gd-doped ZrO2 on the oxidation of l-(+)-tartaric acid and d-(?)-tartaric was also studied.  相似文献   

5.
The N-doped TiO2 has been synthesized by sol?Cgel method, using titanium isopropoxide, isopropanol and an aqueous solution of ammonia with ratio 2:1:10. The concentrations used for the NH3 aqueous solution were 3, 7, 10 and 15?%. The samples have been analysed by X-ray diffraction, electron microscopy (SEM and TEM) thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), micro-Raman spectroscopy and diffuse reflectivity. TEM, SEM, DSC and TGA showed that the morphology is influenced by the presence of N3? ions but not by the concentration of the solution. Instead reflectance gave us a relation between values of the energy gap and the concentration of N3? ions: the gap between valence and conduction band lowers as the concentration of NH3 in the starting solution increases. From these results we can say that the properties of the material have been tuned by doping with nitrogen ions because the particles absorb more light in the visible range, and this is important for photovoltaic and photocatalytic applications.  相似文献   

6.
7.
8.
Pure and Co-doped ZnO nanoparticles were synthesized with different cobalt levels (1–10 mol%) via adapted sol–gel method using water as solvent and characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and photoacoustic absorption spectroscopy. The results showed that all the samples have hexagonal wurtzite structure, with no evidence of any secondary phases until 10 mol% of the dopant. The average crystallite size of the samples was in the range of 25–50 nm, do not showing significant differences with the increase of the dopant level. However, the band gap energy of the nanoparticles decreases from 2.98 eV (pure ZnO) to 1.95 eV (10 mol% of Co). The photocatalytic activity of the samples was evaluated on the removal of methylene blue under visible light irradiation, which revealed an efficiency reduction by Co-doping ZnO. The antibacterial property was carried out indicating activity of the prepared samples against gram-positive bacteria.  相似文献   

9.
This paper presents a surfactant-assisted complex sol–gel method for the controlled preparation of Zinc Oxide (ZnO) nanoparticles using zinc nitrate and citric acid as starting material. ZnO nanoparticles with a pure wurtzite structure were obtained after calcination at 773 K. The effects of the citric acid concentration, the pH, and the surfactants on the average particle size and morphology of the ZnO nanoparticles were investigated using X-ray diffraction and scanning electron microscopy. Well dispersed ZnO nanoparticles with a uniform size distribution were obtained using polyethylene glycol (PEG) 2000 as a surfactant. During sintering, the ZnO nanoparticles revealed isotropic growth below 1,373 K and anisotropic growth above 1,473 K. The particles’ activation energy was calculated to be 140 ± 6 kJ/mol between 773 and 1,373 K.  相似文献   

10.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   

11.
Polycarbonate/epoxy/silica hybrid films were prepared by curing an epoxy reaction via in situ sol–gel process. The influence of the synthetic conditions, such as the ratio of different epoxy reagents and the contents of [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane on the physical and optical properties of these hybrid films were investigated in details. The coefficient of thermal expansion, surface roughness, and light transmittance at a wavelength range from 250 to 800 nm were measured. These excellent overall performances make it a promising photonic packaging material.  相似文献   

12.
13.
The different thermal expansion coefficients and lattice mismatch between ZnO and Al may produce residual stress in Al-ZnO (AZO) thin films. Annealing processes can be applied to modulate this residual stress. In this study, three different rapid thermal annealing (RTA) temperatures (350, 450, and 600 °C) were applied to an AZO thin film, prepared using sol–gel method. The mechanical properties, optical properties, and structure of the AZO thin film were investigated experimentally. The results show that increasing the RTA temperature increased the Young’s modulus and hardness of the films. The grain size of the films also increased with increasing RTA temperature. However, the film thickness and shear stress component decreased with increasing RTA temperature. Both compressive and tensile stress decreased gradually with increasing film thickness after RTA treatment. It was demonstrated that the use of a relatively high RTA temperature can effectively relax the residual stress in AZO thin films.  相似文献   

14.
In this study, the photocatalytic degradation of Reactive Blue 81 (RB81) using synthesized NiO-doped ZnO–ZrO2 nanoparticles under UV irradiation was investigated. Then, the products were characterized by Scanning electron microscope (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS). The removal rate of RB81 using ZnO–ZrO2 after 180?min of irradiation was 96.7%. Nickel oxide (NiO) was used as an additive to ZnO–ZrO2 for improvement of RB81 degradation via photocatalysis process. Photodegradation of RB81 was achieved to 100% using ZnO–ZrO2–NiO nanoparticles with ratio of 1:2:0.3 after 180?min of irradiation. There was a red shift in absorption bands (from 410?nm to 435?nm) observed in increasing of NiO to ZnO–ZrO2 nanoparticle, that it might lead to a higher photocatalytic activity under visible light. Response surface methodology (RSM) was used for optimization of experimental and these results were obtained: solution pH = 3, ZnO–ZrO2–NiO dosage = 15?mg/L, and the initial RB81 concentration = 5?mg/L. The photodegredation of RB81 followed pseudo-first order kinetic according to the Langmuir–Hinshelwood model.  相似文献   

15.
Antireflective coatings (ARCs) on tri-layer thin film stacks were studied in this paper. Silica sols have been prepared by acid-catalyzed or base-catalyzed hydrolysis and condensation reactions of tetraethyl orthosilicate. Antireflective nanometric SiO2/TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. Seen from the transmittance spectra of different films, a maximum light transmittance of 99.9% was obtained at the band of 300–800 nm. Scanning electron microscope (SEM) and atomic force microscopy (AFM) confirm the well-covered surface morphology. By the SEM observations we can see that the films are full of coverage on glass surface and containing no voids or cracks. The image root mean square roughness of the two types of ARCs provided by the AFM is 1.21 and 3.04 nm, respectively. Furthermore, a surface profiler was used to determine the thickness of each layer in the obtained multi-layer coating system.  相似文献   

16.
Lanthanum niobates were prepared by a new polymeric complex sol–gel method using Nb-citrate or -tartrate complexes in different solvent (ethanol or methanol) and calcination at 750–1,050 °C. The perovskite La1/3NbO3 and pyrochlore LaNb5O14 phases were formed after calcination at 900 and 1,050 °C from gels synthesized from ethanol and methanol solvents respectively. The very similar xerogel thermal decomposition processes were observed independently on applied solvents, where the pyrochlore monoclinic LaNbO4 and Nb2O5 phases were intermediate products at lower calcination temperatures during transformation. The particle morphologies changed from spherical 20–50 nm particles at 750 °C to granular LN particles (ethanol) or rectangular (methanol) at 1,050 °C. HRTEM images and SAED verified the coexistence of minority monoclinic LaNbO4 phase with majority phases in individual LN particles after annealing. The strong effect of alcohol solvent on phase formation was shown, while the effect of chelating agent was insignificant.  相似文献   

17.
Silver-doped ZnO thin films with various loadings of Ag in the range of 0–10 mol% were prepared by the sol–gel dip-coating method. All prepared films show X-ray powder diffraction patterns that matched with ZnO in its würtzite structure. The grain size decreased as the Ag loading increased. The prepared films, under UV blacklight illumination, produced a photocatalytic degradation of methylene blue, rhodamine B and reactive orange solutions. Furthermore, they inhibited the growth of Escherichia coli bacteria under UV blacklight irradiation and to a lesser extent in dark conditions. The photocatalytic and antibacterial activities of the prepared films increased with Ag loading, presumably because Ag enhanced the efficiency of generation of superoxide anion radicals (O2 ) and hydroxyl radicals (OH).  相似文献   

18.
19.
20.
In this study, IZO/IGZO powders and films of different composition ratios were fabricated by sol–gel method. The influences of the composition ratio on the decomposition temperature, crystallization behavior, structural and optical properties of multi-component oxides were thoroughly examined. Thermogravimetric/differential scanning calorimetric results revealed that in contrast to zinc and indium oxides, the high crystallization temperature and low crystallinity of gallium oxide were attributed to the high dehydroxylation temperature of gallium hydroxide, which led to the high decomposition and crystallization temperatures of IGZO compound. The XRD analysis of the IGZO films confirmed that the addition of Ga amount made the films turn into amorphous easily. However, TEM analysis suggested that the IZO film (In:Zn = 1:2) and the IGZO (In:Ga:Zn = 1:1:1) film consisted of short-range-order nanostructure although the selected area diffraction of both samples indicated that they are amorphous. The transmittance measurements agreed well with the XRD results; that is, the band gaps of the IZO/IGZO films obviously depend on the composition ratio and are closely related to the change of the structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号