首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New water-soluble trimethyl quaternary derivative of chitosan was synthesized by a multi step processes through protection-deprotection strategy. This derivative was characterized using FTIR and 1H NMR spectroscopy. Finally, the antibacterial effect of this derivative against Gram-negative (Escherichia coli and Salmonella typhimurium) and Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) bacteria in acidic and nutral medium was invetigated. The results of this study demonstrated that this chitosan derivative did not have antibacterial activity against Gram-negative bacteria; however, it showed a relatively good antibacterical effect against Gram-positive bacteria in both acidic and neutral mediums.  相似文献   

2.
A series of benzofuran hydrazones 6a6n were synthesized from benzofuran aldehyde and substituted aromatic hydrazides 5a5n. Structures of all compounds were confimed by IR, 1H and 13C NMR, and Mass spectral data. These compounds were evaluated for their antibacterial activity against gram-negative bacteria (Escherichia coli, –ve), gram-positive bacteria (Bacillus Subtillis, +ve), and antifungal activity against Candida albicans. All compounds demonstrated considerable activity against bacteria and fungi.  相似文献   

3.
A simple and convenient route was performed for the synthesis of some new heterocyclic compounds based on thieno[3,2-c]pyrazole derivative for antimicrobial evaluation. The key intermediate, 5-amino-3-methyl-1-phenyl-1H-thieno[3,2-c]pyrazole-6-carbohydrazide 3, was prepared by Gewald’s synthesis of Ethyl 5-amino-3-methyl-1-phenyl-1H-thieno[3,2-c]pyrazole-6-carboxylate 2. This intermediate reacted with various reagents to afford different fused and polyfunctional substituted. The structures of these compounds were confirmed by elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. All the new synthesized compounds were screened for various microorganisms such as Aspergillus fumigatus; Geotrichum candidum; Syncephalastrum racemosum (Fungus); Candida albicans (Yeast fungus); Staphylococcus aureus; Bacillus subtilis (as Gram-positive bacteria); Pseudomonas aeruginosa and Escherichia coli (as Gram-negative bacteria) by the disc diffusion method. In general, the novel synthesized compounds possessed moderate to high antimicrobial activity against the previously mentioned microorganisms.  相似文献   

4.
The reaction on 8-hydroxy quinoline-7-aldehyde azo compounds (HL n ) (where n = 1–5) with 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one to obtain HL n (where n = 6–10) have been characterized by means of TLC, melting point and spectral data, such as IR, 1H NMR, mass spectra and thermal studies. The X-ray diffraction patterns of two starting materials 8-hydroxy quinoline-7-aldehyde (start 1), 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (start 2) and the ligands (HL5,10) are investigated in powder form. All the ligands have been screened for their antimicrobial activity against four local bacterial species, two Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) as well as against four local fungi; Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The results show that the azo ligands (HL n ) (where n = 1–5) have no antimicrobial activity against bacteria and fungi while most azomethine ligands (HL n ) (where n = 6–10) are good antibacterial agents against E. coli and K. pneumoniae as well as antifungal agents against P. italicum and A. alternata. The results were compared to standard substances (start 1) and (start 2). Among the azomethine ligands, HL10 was the most effective against the most microorganisms tested. The size of clear zone was ordered as p-(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constant (σ R ). Also, the ultrastructure study of the affected bacteria confirmed that HL8 is good antibacterial agent against E. coli and S. aureus.  相似文献   

5.
N-Substituted 7-amino-4-methyl-2H-chromen-2-ones containing one or two functionalized azole or azine moieties were synthesized. The structures of all synthesized compounds were confirmed by IR, 1H NMR, and 13C NMR spectroscopy. Some of the synthesized compounds exhibited weak antibacterial activity against Rhizobium radiobacter, Escherichia coli, and Xanthomonas campestris.  相似文献   

6.
A series of organotin(IV) complexes of type R2SnLCl [R = Ph, Bu, Et, Me] were prepared by reaction of diorganotindichloride(IV) with Schiff base ligands, L1 = (1-[(6-ethoxy-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol), L2 = (1-[(6-nitro-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol), L3 = (1-[(6-methoxy-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol) and L4 = (1-[(6-methyl-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol) obtained from 2-amino-6-substituted benzothiazole derivatives with 2-hydroxy-1-naphthaldehyde in 1:1 molar ratio. These organotin(IV) complexes were characterized by various spectroscopic techniques (1H, 13C and 119Sn NMR, FT-IR), and physical techniques (X-ray powder diffraction analysis and elemental analysis). The coordination of the prepared complexes has been planned as pentacoordinated around the central tin atom during which ligands coordinated to tin atom in bidentate manner acted as N, O donor system. The ligands and their complexes were screened for antibacterial and antifungal activities against Gram-positive bacteria Bacillus cereus (MTCC 10072), Staphylococcus aureus (NCIM 2901), Gram-negative bacteria Escherichia coli (MTCC 732), Pseudomonas aeruginosa (MTCC 424) and fungi Aspergillus niger (MTCC 9933) and Aspergillus flavus (ATCC 76801). The output of QSAR analysis indicated that topological parameters (molecular connectivity indices) were responsible for controlling the antimicrobial activity of the synthesized compounds.  相似文献   

7.
A series of novel substituted bis-benzimidazole derivatives were synthesized by reaction of 5,5′-methylenebis(2-hydroxybenzaldehyde) with various substituted o-phenylenediamines in glacial acetic acid. The structure of the newly synthesized compounds was elucidated by 1H and 13C NMR, FT-IR, and MS spectra, and their antimicrobial activity against gram positive and gram negative bacteria and antifungal activity were evaluated. The thienyl-substituted derivative showed significant activity against Bacillus licheniformis. Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia (bacteria), and Fusarium solani (fungi). The activities of the fluoro-substituted substituted derivative against some bacterial strains and of the thienyl-substituted derivative against fungi were found to be similar to those of standard drugs.  相似文献   

8.
In the present study, a series of chalcone derivatives including 17 new compounds were synthesised; their antibacterial activities against eleven bacteria, and their free radical-scavenging activities using DPPH were evaluated. All compounds showed significant antibacterial activities against both Gram-positive and Gram-negative bacteria. In particular, compound IIIf strongly inhibited Staphylococcus aureus (JMC 2151) and Enterococcus faecalis (CARS 2011-012) with MIC values of 6.25 µg mL?1 and 12.5 µg mL?1, respectively, which are comparable to that of the standard antibiotic, nalidixic acid. Compound IIIg also inhibited S. aureus with a MIC value similar to that of nalidixic acid (6.25 µg mL?1). Furthermore, like nalidixic acid (MIC value of 25 µg mL?1), compounds IIIa, IIIc and IIId inhibited Listeria monocytogenes (ATCC 43256) with MIC values of 25 µg mL?1, 12.5 µg mL?1 and 25 µg mL?1, respectively. Quantitative structure-activity relationship (Q-SAR) studies using physicochemical calculations indicated that the antibacterial activities of chalcone derivatives correlated well with predicted physicochemical parameters (logP and PSA). Docking simulation by positioning the most active compound IIIf in the active site of the penicillin-binding protein (PBP-1b) of S. aureus was performed to explore the feasible binding mode. Furthermore, most of the compounds synthesised exhibited significant DPPH radical-scavenging activity, although compounds IIc and IIIc exhibited the greatest antioxidant activity with IC50 values of 1.68 µM and 1.44 µM, respectively, comparable to that of the standard antioxidant, ascorbic acid (1.03 µM).  相似文献   

9.
Novel penta-azamacrocyclic 21-membered [N5] ligand [L] and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been isolated and characterized. The mode of bonding and overall geometry of the complexes have been inferred through IR, MS, UV–Vis, EPR, 1H NMR spectral studies, molar conductivity, magnetic, thermal and microanalyses, On the basis of above studies, an octahedral geometry has been proposed for all complexes except Pd(II) chloride complex which adopt square planar geometry. The in vitro antitumor activity of the synthesized ligand and some selected complexes against human breast and human hepatocarcinoma cell lines (MCF-7) and (HePG2), respectively has been studied. The results show that the tested compounds are potent antitumor agents. Also the ligand and some selected complexes have been tested for their inhibitory effect on the growth of bacteria: Streptococcus pyogenes as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. The activity data show that most of the tested compounds exhibit remarkable antibacterial activity against these organisms.  相似文献   

10.
A new series of 2-morpholine–piperidine–pyrrolidine substituted quinoline based chalcones have been synthesized by conventional and microwave irradiation methods. All synthesized compounds were characterised by IR, 1H and 13C NMR, mass spectrometry, and elemental analysis. The products were evaluated in vitro for antibacterial activity against two bacterial strains (Staphylococcus aureus, Escherichia coli) and antifungal activity against two fungal strains (Aspergillus flavus, Candida metapsilosis). 2-Piperidine substituted quinoline chalcones demonstrated high antimicrobial activity.  相似文献   

11.
Synthesis of thiazoles was carried out from allyl thioureas using different cyclizing agents such as hydrogen chloride gas and bromine. Synthesized compounds were characterized by IR, 1H and 13C NMR, mass spectrometry, and elemental analysis. The synthesized thiazoles were evaluated for their antibacterial activity against Gram postitive (Lactobacillus bulgaris and Streptococcus mitis) and Gram negative (Yersinia) as well as antifungal activity against Aspergillus niger fungi.  相似文献   

12.
An Ag(I)-N-heterocylic carbene (NHC) complex, [Ag(L)2]PF6 (L = 1-(2′-methylbenzyl)-3-(2″-propyl)benzimidazolium), was used as a transfer agent for the synthesis of a Pd(II)–NHC complex, formulated as [PdCl(L)2(MeCN)]PF6 (Pd1). The complex Pd1 was characterized by 1H and 13C NMR, FTIR spectroscopy and elemental analysis. Single crystal X-ray diffraction analysis reveals that the Pd(II) atom has a square planar geometry. This complex was screened for its antibacterial potential against the Gram-negative bacteria Escherichia coli (ATCC 25922) and the Gram-positive bacteria Staphylococcus aureus (ATCC 12600). These results are compared with those obtained for a standard antibiotic, ampicillin, and also the corresponding Ag(I)–NHC complex.  相似文献   

13.

Background

The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

Methodology

All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

Results, discussion and conclusion

Compound W6 (MICsa, st, kp?=?5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an?=?5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC?=?8.16 µM). The anticancer screening demonstrated that compound W17 (IC50?=?4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50?=?7.69 µM).
  相似文献   

14.
Two new oxovanadium(V) complexes, [VOL1(OCH3)(CH3OH)] (I) and [VOL2(OCH3)] (II), where L1 and L2 are the di-anionic form of N'-[1-(5-fluoro-2-hydroxyphenyl)methylidene]nicotinohydrazide and N'-(5-fluoro-2-hydroxybenzylidene)-2-hydroxynaphthylhydrazide, respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination (CIF files CCDC nos. 891852 (I), 891853 (II)). The crystal of I is monoclinic: space group P21/c, a = 8.061(1), b = 15.293(2), c = 13.471(2) Å, ß = 92.595(2)°, V = 1658.8(4) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 7.4454(9), b = 8.0833(9), c = 28.906(2) Å, ß = 92.644(2)°, V = 1737.8(3) Å3, Z = 4. The V atom in I is in an octahedral coordination, and that in II is in a square-pyramidal coordination. The antibacterial activity of the compounds against various bacteria was assayed.  相似文献   

15.
Pyrazolo[3,4-d]pyrimidines are one of the most important classes of fused heterocyclic compounds which exhibit a broad range of biological and medicinal properties. They are known as anticancer, antifungal, antibacterial, antiviral and anti-inflammatory agents. In this study, some new 6-substituted 4-amino-pyrazolo[3,4-d]pyrimidine derivatives were prepared via reaction of 5-amino-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile with various nitriles in the presence of sodium ethoxide as catalyst. The inhibitory properties of synthesized compounds were studied according to CLSI guidelines against some pathogenic bacteria including four gram-positive strains (Streptococcus pyogenes, Staphylococcus aureus, Bacillus cereus and Bacillus subtilis subsp. spizizenii) and three gram-negative strains (Pseudomonas aeruginosa, Shigella flexneri and Salmonella enterica subsp. enterica). The antibacterial effects of all derivatives were compared with those of antibiotics belonging to different classes. The values were reported as inhibition zone diameter (IZD), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The effect of substituents on the biological activity of derivatives was discussed as well. The inhibitory effect of compound 6a, was shown to be the most, with MIC values in the range of 32–4096 μg/mL. Since most of the synthesized compounds were effective against Streptococcus pyogenes and Pseudomonas aeruginosa, they can be considered as inhibitors of these two bacteria.  相似文献   

16.
New Cu(II) and Pd(II) complexes of tetradentate macrocyclic nitrogen ligand i.e. (10E,13E)-11,13-dimethyl-4H-dibenzo[g,n]naphtho[1,8-bc][1,5,9,13]tetraazacyclohexa-decine 5,19(12H,20H)-dione have been synthesized. The compounds have been characterized by elemental analyses, spectral (IR, UV–Vis, 1H NMR, MS and ESR), 3D molecular modeling, molar conductivity, magnetic as well as thermal analysis measurements. On the basis of above studies, tetragonally distorted octahedral or square planar geometry has been proposed for the complexes. Also, the in vitro antitumor activity of the synthesized ligand and most complexes against human breast and human hepatocarcinoma cell lines (MCF-7 and HepG2, respectively) has been studied. Furthermore, the current compounds have been screened for their possible antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria Aspergillus flavus and Candida albicans as antifungal agents.  相似文献   

17.
A series of novel coumarin substituted amide derivatives were synthesized and evaluated for their antibacterial activities. Result indicated that compounds 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n, 3o and 3q exhibited excellent antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas citri subsp. Citri (Xcc) in vitro, which were better than those of commercial agricultural antibacterial thiodiazole-copper. The title compounds with electron-withdrawing group showed better antibacterial activities than those of compounds with electron-donating group, and the title compounds bearing the same substituent group exhibited better antibacterial activities against Xcc than antibacterial activities against Xoo.  相似文献   

18.

Background

Thiazolidinedione is a pentacyclic moiety having five membered unsaturated ring system composed with carbon, oxygen, nitrogen and sulfur molecules at 1 and 3 position of the thiazole ring and widely found throughout nature in various form. They favourably alter concentration of the hormones secreted by adipocytes, particularly adiponectin. They also increase total body fat and have mixed effects on circulating lipids. Thiazolidinedione nucleus is present in numerous biological moieties and has different pharmacological activities likes, e.g. antimalarial, antimicrobial, antimycobacterial, anticonvulsant, antiviral, anticancer, anti-inflammatory, antioxidant, anti-HIV (human immunodeficiency virus) and antituberculosis.

Results and discussion

The synthesized compounds were screened for their in vitro antimicrobial potential against Gram (positive and negative) bacterial and fungal strains by tube dilution technique. In this series, compound 10 exhibited significant antimicrobial activity against B. subtilis and S. aureus with MIC?=?4.2?×?10?2 µM/ml, compound 15 showed significant activity against K. pneumonia with MIC?=?2.60?×?10?2 µM/ml and compound 4 displayed potent antibacterial activity against E. coli with MIC?=?4.5?×?10?2 µM/ml. Compound 10 had most potent antifungal activity against C. albicans and A. niger with MIC?=?4.2?×?10?2 µM/ml. Compounds 12 and 15 were found as most active antidiabetic agents having IC50?=?27.63 μg/ml and 22.35 μg/ml, respectively, using DPPH assay. Antioxidant activity results indicated that compounds 3 and 9 displayed good antioxidant agent with IC50?=?29.04 μg/ml and 27.66 μg/ml respectively, using α amylase assay.

Conclusion

All the synthesized derivatives exhibited good antimicrobial, antidiabetic and antioxidant activities using specific methods then compared with mentioned standard drugs. Especially, compounds 3, 4, 9, 10, 12 and 15 displayed highest activity. Structure activity relationship demonstrated that presence of electron withdrawing group (o-NO2, p-Cl, p-Br) enhanced the antibacterial activity against E. coli as well as increased the antioxidant activity while the presence of electron releasing group (o/p-OCH3, 3,4,5-trimethoxy) enhanced the antibacterial activity against S. aureus, B. subtilis, S. typhi, K. pneumonia, C. albicans and A. niger as well as the antidiabetic activity.
  相似文献   

19.
Two new mononuclear complexes, [NiL1] · CH3OH (I) and [NiL2] (II), have been prepared from the tetradentate Schiff bases N,N'-bis(5-methylsalicylidene)ethylenediamine (H2L1) and N,N'-bis(5-methylsalicylidene)- o-phenylenediamine (H2L2), respectively. The complexes have been characterized by physico-chemical and spectroscopic methods, as well as single-crystal X-ray determination (CIF files nos. 1428969 (I), 1428968 (II)). Complex I crystallizes in the triclinic space group P1 with a = 6.7387(14), b = 10.7010(17), c = 12.681(2) Å, α = 87.059(2)°, β = 88.828(2)°, γ = 89.901(2)°, V = 913.0(3) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P21/n with a = 12.1437(11), b = 8.0537(8), c = 18.4545(18) Å, β = 105.088(2)°, V = 1742.7(3) Å3, Z = 4. The nickel atoms in the complexes are coordinated by two phenolate O and two imine N atoms of the tetradentate Schiff base ligands, forming square planar coordination. The complexes and the Schiff base compounds were assayed for antibacterial activities against three Gram-positive bacterial strains (B. subtilis, S. aureus, and St. faecalis) and three Gram-negative bacterial strains (E. coli, P. aeruginosa, and E. cloacae) by MTT method. As a result, the complexes showed effective antimicrobial activity against the microorganisms tested.  相似文献   

20.
The ligand 1,2-dimorpholinoethane (DME) was used to prepare Zn(II) and Ni(II) complexes of the general formulation MLX2 (L = DME, X = Cl or NO3). Zinc(II) complex exhibits spectral properties indicative of a distorted tetrahedral geometry, with DME coordinating through two nitrogen atoms and two chlorides completing the tetrahedron. This is in contrast to the six-coordinated, distorted octahedral geometry exhibited by nickel(II) complex of DME when NO3 was used as counter ions. The X-ray diffraction confirms the structures of two complexes and shows that the ligand coordinates through two nitrogen atoms while the two ether linkages are not involved in complexation, which would have been the case if the morpholine rings were in the boat form. The ligand and related complexes have antibacterial activity against the five Gram-positive bacteria: Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Streptococcus pyogenes and also against the three Gram-negative bacteria: Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442 and Klebsiella pneumonia ATCC 70063. The results showed that in some cases the antibacterial activity of the complexes exceeded the one of sulfisoxazole used as a standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号