首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Layered silica/surfactant mesostructured thin films containing chlorophyllous pigments [C13(2)-demethoxycarbonyl-pheophytin b (pyroPheo b) or zinc C13(2)-demethoxycarbonyl-chlorophyll b (Zn-pyroChl b)] have been prepared on an indium tin oxide (ITO) electrode grafted with a chlorophyll derivative possessing a triethoxysilyl group (copper C13(2)-demethoxycarbonyl-chlorophyllide a 3-triethoxysilyl propylamide, Cu-APTES-Chl a) to achieve effective light harvesting and successive photocurrent generation by the mesostructured films. The incorporation of pyroPheo b and Zn-pyroChl b in the mesostructured film resulted in 1.2- and 1.6-fold increases of the photocurrent density, respectively, as compared to the case of an antenna pigment-free film also grafted to a surface-modified ITO electrode. The difference action spectra, between the electrodes with and without the antenna pigments, coincided well with the absorption spectra of the immobilized pigments. Because direct electron injection from the antenna pigments in the mesostructured films to the ITO electrode was scarcely observed, the energy transfer from the antenna pigments to Cu-APTES-Chl a plays an important role for the increase in photocurrent density. The usefulness of the mesostructured films as model systems is discussed in relation to the photosynthetic primary processes of higher plants.  相似文献   

2.
The mechanisms of suppression and enhancement of photocurrent/conversion efficiency (performance) in dye-sensitized solar cells, using carotenoid and chlorophyll derivatives as sensitizers, were compared systematically. The key factor to enhance the performance was found to be how to minimize interaction among the excited-state dye-sensitizer(s). In a set of retinoic-acid (RA) and carotenoic-acid (CA) sensitizers, having n conjugated double bonds, CA7 gave rise to the highest performance, which was reduced toward RA5 and CA13. The former was ascribed to the generation of triplet and the resultant singlet-triplet annihilation reaction, while the latter, to the intrinsic electron injection efficiency. In a set of shorter polyene sensitizers having different polarizabilities, the one with the highest polarizability (the highest trend of aggregate formation) exhibited the higher performance toward the lower dye concentration and the lower light intensity, contrary to our expectation. This is ascribed to a decrease in the singlet-triplet annihilation reaction. The performance of cosensitization, by a pair of pheophorbide sensitizers without and with the central metal, Mg or Zn, was enhanced by the light absorption (complementary rather than competitive), the transition-dipole moments (orthogonal rather than parallel) and by the pathways of electron injection (energetically independent rather than interactive).  相似文献   

3.
A series of zinc 3(1)-hydroxymethyl chlorins 10 a-e and zinc 3(1)-hydroxyethyl chlorins 17 with varied structural features were synthesized by modifying naturally occurring chlorophyll a. Solvent-, temperature-, and concentration-dependent UV/Vis and CD spectroscopic methods as well as microscopic investigations were performed to explore the importance of particular functional groups and steric effects on the self-assembly behavior of these zinc chlorins. Semisynthetic zinc chlorins 10 a-e possess the three functional units relevant for self-assembly found in their natural bacteriochlorophyll (BChl) counterparts, namely, the 3(1)-OH group, a central metal ion, and the 13(1) C==O moiety along the Q(y) axis, and they contain various 17(2)-substituents. Depending on whether the zinc chlorins have 17(2)-hydrophobic or hydrophilic side chains, they self-assemble in nonpolar organic solvents or in aqueous media, respectively. Zinc chlorins possessing at least two long side chains provide soluble self-aggregates that are stable in solution for a prolonged time, thus facilitating elucidation of their properties by optical spectroscopy. The morphology of the zinc chlorin aggregates was elucidated by atomic force microscopy (AFM) studies, revealing well-defined nanoscale rod structures for zinc chlorin 10 b with a height of about 6 nm. It is worth noting that this size is in good accordance with a tubular arrangement of the dyes similar to that observed in their natural BChl counterparts in the light-harvesting chlorosomes of green bacteria. Furthermore, for the epimeric 3(1)-hydroxyethyl zinc chlorins 17 with hydrophobic side chains, the influence of the chirality center at the 3(1)-position on the aggregation behavior was studied in detail by UV/Vis and CD spectroscopy. Unlike zinc chlorins 10, the 3(1)-hydroxyethyl zinc chlorins 17 formed only small oligomers and not higher rod aggregate structures, which can be attributed to the steric effect imposed by the additional methyl group at the 3(1)-position.  相似文献   

4.
Introducing a porphyrin bearing electron acceptor onto a self-assembled monolayer (SAM) using a supramolecular method to form a hetero-dimer increased the photocurrent value compared with using porphyrin without an electron acceptor.  相似文献   

5.
The influences of two structural modifications on the photocurrent generation performance of the Langmuir–Blodgett (LB) film of the 6-O-phthalocyaninyl cellulose derivative were investigated. These structural modifications were the substituent groups at the O-2 and O-3 positions, and the central metal of the phthalocyanine moiety. Specifically, 6-O-Zn/phthalocyaninyl- (8a) and Pd/phthalocyaninyl (8b) -2,3-di-O-myristoylcelluloses were prepared instead of 6-O-Zn/phthalocyaninyl-2,3-di-O-myristylcellulose (2). The LB monolayer film of compound 8a on an indium thin oxide electrode showed higher photocurrent generation performance than that of compound 2. This suggested that myristoyl groups (C-14 acyl groups) were more beneficial to photocurrent generation than myristyl groups (C-14 alkyl groups), as the substituent at the O-2 and O-3 positions. The LB monolayer film of compound 8b showed photocurrent generation from 500 to 700 nm, although a blue-shift in the Q-band maximum was observed. The photocurrent generation performance of compound 8b was significantly higher than that of compound 8a. This indicated that Pd was more beneficial to photocurrent generation than Zn. The film of compound 8b prepared by the horizontal lifting method showed better photocurrent generation performance than that prepared by the vertical dipping method. Consequently, compound 8b is a complementary material to the porphyrin-appended cellulose derivative (1) for photocurrent generation system.  相似文献   

6.
A photoinduced proton reduction to produce H2 was found to take place in the system using zinc tetraphenylporphine (ZnTPP) incorporated into a Nafion® membrane coated on a platinum electrode (denoted as Pt/Nf[ZnTPP]). When visible light (λ > 390 nm) was irradiated on the Pt/Nf[ZnTPP] system, a photocurrent was generated under applied potentials below −0.10 (v. Ag/AgCl). The action spectrum for the photocurrent agreed with the absorption spectrum of the Nf[ZnTPP] membrane, showing that the present photochemical process is induced on light absorption by the ZnTPP. By measuring the emission decay of ZnTPP under the photoelectrochemical conditions, it was exhibited that the emission from the singlet excited ZnTPP is quenched by the cathodic potentials. The amount of the H2 produced increased with the cathodic potentials. These results indicated that, in the photochemical primary process, a reductive quenching takes place by electron injection from the Pt electrode to the singlet excited ZnTPP forming ZnTPP.–, subsequently leading to the H2 formation by a bimolecular catalysis of the ZnTPP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
It has been shown on the example of semiconductor (CdS, TiO2) and metal complex (solvate complexes (V(III), Eu(III), Zr(IV)) photocatalysts that they can form a single photocatalytic system that is characterized by higher efficiency in the direction of the formation of hydrogen from alcohol-water solutions than the individual substances. Successful functioning of such a hybrid photocatalytic system is possible if the principle of energy correspondence is satisfied: the potential of the conduction zone of the semiconductor must be more negative than the redox potential of the Men+/Me(n–1)+ pair. In this case a photogenerated electron of the conduction zone is accepted by a metal ion Men+ and, thus, the electron-hole recombination process is suppressed. The resulting reduced form of the metal Me(n–1)+ in the presence of metallic palladium decomposes the protonated molecules of water with the formation of H2.Translated from Teoreticheskaya i Éksperimentalnaya Khimiya, Vol. 25, No. 4, pp. 452–459, July–August, 1989.  相似文献   

8.
Various possible pathways for photochemical conversion of light energy, including light-induced electron transfer and hydride transfer, are described. Several problems diminishing the photoconversion efficiency as well as side reactions affecting the stability of these systems are discussed. Oxidation of photosensitizers by singlet oxygen as well as attack by OH radicals is supposed to be the main degradation pathway for dyes and for the photoinduced reactions. The stability of viologens (acting as electron transfer agents) is mainly affected by hydrogenation, for which a reaction mechanism is presented. The dependence of rate constants on the free enthalpy of reaction is discussed with respect to quantum yields for light energy conversion. Following this, quantum yields of cyclic water splitting based on diffusion-controlled reactions are very low. Selective catalysis or vectorial processes (with a spatial charge separation) could enhance the quantum yields.  相似文献   

9.
Band gap narrowing is important for applications of ZnO, especially for photoelectrochemical water splitting. In this work, we carried out first-principles electronic structure calculations with a hybrid density functional on defected ZnO. It is found that nitrogen substitutional doping alone cannot explain the largely enhanced conversion efficiency observed in nitrogen doped ZnO. Instead, complex defects formed by substitutional nitrogen and intrinsic defects play an important role in the band gap narrowing, in agreement with recent experimental results. We propose ZnO fabricated in a Zn-rich environment with heavy nitrogen doping as a photocatalyst for hydrogen generation from water splitting. A method for controlling the band gap of ZnO is also proposed.  相似文献   

10.
Benzoxazoles are synthesised directly by oxidative condensation of primary and secondary amines with o-aminophenols under hydrogen transfer catalysis. The optimal system utilises 1 mol % of the Shvo catalyst, with dimethoxybenzoquinone as the hydrogen-accepting terminal oxidant.  相似文献   

11.
Hydrogen is considered an attractive alternative to fossil fuels,but only a small amount of it is produced from renewable energy,making it not such a clean energy carrier after all.Producing hydrogen through water electrolysis is promising,but using a cost-effective and high-performing catalyst that has longterm stability is still a challenge.This study exploits,for the first time,the potential of zinc oxide nanoparticles with diverse morphologies as catalysts for the electrocatalytic production of hydrogen from water.The morphology of the nanoparticles(wires,cuboids,spheres)was easily regulated by changing the concentration of sodium hydroxide,used as the shape controlling agent,during the synthesis.The spherical morphology exhibited the highest electrocatalytic activity at the lowest potential voltage.These spherical nanoparticles had the highest number of oxygen vacancies and lowest particle size compared to the other two morphologies,features directly linked to high catalytic activity.However,the nanowires were much more stable with repeated scans.Density-functional theory showed that the presence of oxygen vacancies in all three morphologies led to diminished band gaps,which is of catalytic interest.  相似文献   

12.
Zn-doped Ga(2)O(3) samples were prepared by a homogeneous precipitation (HP) method, and the local structures of Zn ions and their photocatalytic activities for hydrogen production were examined. In the sample with low doping amount, the Zn(2+) ions substituted for the Ga(3+) ions in the Ga(2)O(3) photocatalyst and enhanced the photocatalytic activity, since they would improve the migration of the photoexcited electrons in the conduction band of the Ga(2)O(3) photocatalyst. In the sample with high doping amount, the Zn ions formed a composite ZnGa(2)O(4) phase in the bulk of the Ga(2)O(3) photocatalyst to decrease the photocatalytic activity in the present reaction.  相似文献   

13.
Langmuir-Blodgett (LB) films containing porphyrin molecules were fabricated by use of 6-O-dihydrophytylcellulose (DHPC) toward anodic photocurrent generation systems. To suppress the porphyrin aggregation, two different approaches were applied: (1) mixing a low-molecular-weight porphyrin having a diterpenoid carbon skeleton (DPor) with DHPC as a matrix (matrix fabrication) and (2) bonding porphyrin molecules to the hydroxyl groups of DHPC covalently, converting into 6-O-dihydrophytyl-2,3-di-O-[p-(10,15,20-triphenyl-5-porphyrinyl)-benzoyl]cellulose as a scaffold (scaffold fabrication). The structure and film properties of the monolayers and the LB films were investigated by the surface pressure (π)–area (A) isotherm measurements, atomic force microscopy, UV–Vis spectroscopy, and absorption dichroism measurements. The porphyrin aggregation in the LB film could be well suppressed only by the scaffold fabrication, leading to the improvement of the photocurrent quantum yields. The efficient photocurrent performance can be demonstrated by the isolation and the parallel orientation of porphyrin moieties due to the cellulose rigid scaffold. This paper was the subject of the Best Poster Award of the 235th edition of the ACS National Meeting, Cellulose and Renewable Materials.  相似文献   

14.
Two new noble-metal-free molecular devices,[{Co(dmgH) 2 Cl}{Zn(PyTPP)}](1,dmgH = dimethyloxime,PyTPP = 5-(4pyridyl)-10,15,20-triphenylporphyrin) and [{Co(dmgH) 2 Cl}{Zn(apPyTPP)}](2,apPyTPP = 5-[4-(isonicotinamidyl)phenyl]10,15,20-triphenylporphyrin),for light-driven hydrogen generation were prepared and spectroscopically characterized.The zinc porphyrin photosensitizer and the Co III-based catalyst unit are linked by axial coordination of a pyridyl group in the periphery of zinc-porphyrin to the cobalt centre of catalyst with different lengths of bridges.The apparent fluorescence quenching and lifetime decays of 1 and 2 were observed in comparison with their reference chromophores,Zn(PyTPP)(3) and Zn(apPyTPP)(4),suggesting a possibility for an intramolecular electron transfer from the singlet excited state of zinc porphyrin unit to the cobalt centre in the molecular devices.Photochemical H2-evolving studies show that complexes 1 and 2 are efficient molecular photocatalysts for visible light-driven H2 generation from water with triethylamine as a sacrificial electron donor in THF/H2 O,with turnover numbers up to 46 and 35 for 1 and 2,respectively.In contrast to these molecular devices,the multicomponent catalyst of zinc porphyrin and [Co(dmgH) 2 PyCl] did not show any fluorescence quenching and as a consequence,no H2 gas was detected by GC analysis in the presence of triethylamine with irradiation of visible light.The plausible mechanism for the photochemical H2 generation with these molecular devices is discussed.  相似文献   

15.
In this work, for the first time, metal hydrogen phosphates and sulfates have been studied as effective solid acid catalysts for the condensation of resorcinol with aromatic and aliphatic aldehydes to give tetrameric cyclic products, resorcinarenes, which have major roles in biological and industrial activities. This catalyst has several advantages, it is non-toxic, thermally and mechanically stable, inexpensive and highly resistant against organic solvents. It increases the reaction rate about six fold and makes this method an attractive alternative to the existing methods for resorcinarene formation. Interestingly, the present catalyst exhibited a high turnover number (TON) and turnover frequency (TOF) which were even comparable with that of HCl.  相似文献   

16.
Supramolecular photosynthetic systems made up of the [Ir(ppy)(2)(bpy)](+) and [Co(bpy)(3)](2+) cores (ppy = 2-phenylpyridinate, bpy = 2,2'-bipyridine) are in situ self-assembled in aqueous media to generate H(2) upon visible light irradiation, where one of them recorded a relatively high turnover number of 20.  相似文献   

17.
TsOH/graphite and N,N‐dimethylaniline/graphite were found to be catalyst systems for condensation reaction of o‐phenylendiamine with different aldehydes to form benzimidazole derivatives under mild and simple conditions. The graphite was easily recovered by a simple extraction and could be reused without decrease of activity in the presence of fresh TsOH and N,N‐dimethylaniline.  相似文献   

18.
The growth of lanthanum conversion coatings on the zinc powder modified by ultrasonic immersion is deeply investigated by Auger electron spectroscopy, X-ray photoelectron spectroscopy, spectrophotometrical and other characterization techniques. The conversion kinetics of La element and the growth mechanism of lanthanum conversion layers are also reported and proposed. The influence of the lanthanum conversion coatings on the discharge properties and cycle behaviors of zinc electrodes is evaluated through charge–discharge measurements and cycle voltammetry. It is found that La2O3 and ZnO compose the lanthanum conversion films and trace content of La element in modified zinc powder can be controlled by varying the ultrasonic power. Furthermore, the superior performance of zinc electrode using the zinc powder coated with lanthanum conversion films is clearly established by low capacity loss and high cycle stability. The great improvement over the electrochemical properties of zinc electrodes should be ascribed to the physical shielding effect of lanthanum conversion layers.  相似文献   

19.
Living cationic polymerization of p-methylstyrene has been investigated with use of hydrogen iodide/zinc halide initiating systems (HI/ZnX2; X = Cl, I) in toluene and methylene chloride solvents. The best results were obtained with HI/ZnCl2 below 0°C where the zinc salt was employed in excess over hydrogen iodide (HI/ZnCl2 = 1/5 molar ratio). Under these conditions, the number-average molecular weights $ \left( {\overline {M_n } } \right)$ of the produced polymers increased proportionally to monomer conversion, further increased upon addition of fresh feeds of p-methylstyrene into completely polymerized reaction mixtures, and were in good agreement with the calculated values assuming that one living polymer chain forms per molecule of hydrogen iodide; the molecular weight distributions (MWDs) of the polymers were fairly narrow $ \left( {{{\overline {M_w } } \mathord{\left/ {\vphantom {{\overline {M_w } } {\overline {M_n } }}} \right. \kern-\nulldelimiterspace} {\overline {M_n } }} = 1.1 - 1.3} \right) $ throughout these processes. In contrast, when equimolar mixtures of hydrogen iodide and zinc chloride or iodide were employed, the polymerizations were rather slow even in methylene chloride at +25°C, and the product polymers exhibited bimodal MWDs, the lower-molecular weight fraction of which was mediated by long-lived growing species. Addition of tetra-n-butylammonium iodide as a common ion salt (nBu4NI/HI = 1/200 molar ratio) led to unimodal MWDs consisting of the long-lived lower polymer fraction alone.  相似文献   

20.
The hydrogen production by water electrolysis was tested with different electrocatalysts (molybdenum, nickel, iron alloys containing chromium, manganese and nickel) using aqueous solutions of ionic liquid (IL) like 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4). The hydrogen evolution reaction (HER) was performed at room temperature in a potential of −1.7 V (PtQRE). A Hoffman cell apparatus was used to water electrolysis with current density values, j, between 14.6 mA cm−2 (for Ni electrode) and 77.5 mA cm−2 (for Mo electrode). The system efficiency was very high for all electrocatalysts tested, between 97.0% and 99.2%. The energy activation values of HER was determined in an aqueous solution of BMI.BF4 10 vol.%, using platinum (23.40 kJ mol−1) and Mo (9.22 kJ mol−1) as electrocatalysts. The results show that the hydrogen production in IL electrolyte can be carried out with cheap material at room temperature, which makes this method economically attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号