首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apprehension over exhaustion of fossil fuels and global warming, due to increasing amounts of CO2, has generated a lot of attention for the subject of renewable energy. Renewable energy has an intermittency problem and its output fluctuates depending on natural conditions. Biohydrogen is one of the promising renewable energy sources. Hydrogen produced by photosynthetic bacteria depends on the intensity of light irradiation and also fluctuates with the daily variation of sunlight. The co-culture system of dark-fermentative and photosynthetic bacteria is one solution for reducing the dependency of hydrogen production on light intensity. Because these two strains of bacteria have different processes of hydrogen production, it is possible to combine different outputs so far as the co-culture system works well. This study performed hydrogen production by the co-culture system composed of agar gels embedded with both dark-fermentative bacteria, Clostridium butyricum MIYAIRI, and photosynthetic bacteria, Rhodobacter sphaeroides RV, under a fluctuating light-irradiation. The time-course of hydrogen production was determined for the different conditions of co-culture in the mixing ratios of the two bacterial strains and light-irradiation patterns. As a result, the co-culture system succeeded in producing hydrogen exceeding that in the case of a single culture system and improved its stability against light fluctuation. Hydrogen production by the co-culture system would be applicable to the reduction of intermittency in renewable energies.  相似文献   

2.
Renewable energy is regarded as a clean energy source but has some problems, one of which is intermittency. To reduce this, the time-delay of hydrogen production by photosynthetic bacteria can be effective. In this study, we qualitatively evaluated the time-delay of hydrogen production by photosynthetic bacteria under various irradiation conditions, and we also quantitatively evaluated it by fitting the experimental data and the hydrogen production model with a genetic algorithm. As a result of model fitting, we found that the relationship between the lengths of the optimized time-delay of hydrogen production by photosynthetic bacteria and the amount of light irradiation is linear. And we also found that the time-delay of hydrogen production by photosynthetic bacteria had an upper limit under low light intensity. We have suggested the existence of an energy store mechanism in photosynthetic bacteria.  相似文献   

3.
Microalgae are capable of acclimating to changes in light and ultraviolet radiation (UVR, 280–400 nm). However, little is known about how the ecologically important coccolithophore Emiliania huxleyi responds to UVR when acclimated to different light regimes. Here, we grew E. huxleyi under indoor constant light or fluctuating sunlight with or without UVR, and investigated its growth, photosynthetic performance and pigmentation. Under the indoor constant light regime, the specific growth rate (μ) was highest, while fluctuating outdoor solar radiation significantly decreased the growth rate. Addition of UVR further decreased the growth rate. The repair rate of photosystem II (PSII), as reflected in changes in PSII quantum yield, showed an inverse correlation with growth rate. Cells grown under the indoor constant light regime exhibited the lowest repair rate, while cells from the outdoor fluctuating light regimes significantly increased their repair rate. Addition of UVR increased both the repair rate and intracellular UV‐absorbing compounds. This increased repair capability, at the cost of decreased growth rate, persisted after the cells were transferred back to the indoor again, suggesting an enhanced allocation of energy and resources for repair of photosynthetic machinery damage by solar UVR which persisted for a period after transfer from solar UVR.  相似文献   

4.
Photosynthesis is one of the first natural processes evolved by cyanobacteria, algae and green plants to trap light and CO2 in the form of reduced carbon compounds while simultaneously oxidizing water to oxygen. The photosynthetic energy conversion forms the basis for all the existing life today. The photosynthetic energy is being harnessed in many ways using modern technologies for the production of fuels using photosynthetic organisms, generation of direct electricity using photosystems/photosynthetic organisms in photo-bioelectrochemical cells or through photovoltaic systems. While the production of energy rich carbon fuels (ethanol, propanol) from photosynthetic organisms has already been accomplished due to advancement in understanding microbial physiology and metabolism, the photosynthetic hydrogen production as well as direct electricity generation from light is still at its infancy. Recent advances include combining photosystem complexes with hydrogenases for hydrogen production, using isolated thylakoids, photosystems on nanostructured electrodes such as gold nanoparticles, carbon nanotubes, ZnO nanoparticles for electricity generation. Many challenging optimizations on the immobilization methods, catalyst stability and isolation procedures, electron transfer strategies have acquired momentum leading to the production of more stable and higher current densities and power densities in photosynthetic devices. Further, the use of whole cell microorganisms (cyanobacteria, microalgae) rather than their isolated counterparts has produced promising results. The photosynthetic energy conversion has an enormous potential for renewable energy generation in a sustainable and environment friendly manner.  相似文献   

5.
Flexible crystals that can capture solar energy and convert it into mechanical energy are promising for a wide range of applications such as information storage and actuators, but obtaining them remains a challenge. Herein, an elastic crystal of a barbiturate derivative was found to be an excellent candidate, demonstrating plastic bending behavior under natural sunlight irradiation. 1H NMR and high-resolution mass spectrum data of microcrystals before and after light irradiation demonstrated that light-induced [2+2] cycloaddition was the driving force for the photomechanical effects. Interestingly, the crystals retained elastic bending even after light irradiation. This is the first report of flexible crystals that can be driven by natural sunlight and that have both photomechanical properties and elasticity. Furthermore, regulation of the passive light output direction of the crystals and transport of objects by applying mechanical forces and light was demonstrated.  相似文献   

6.
The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light‐induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf‐inspired photomicroreactor that constitutes a merger between luminescent solar concentrators (LSCs) and flow photochemistry to enable green and efficient reactions powered by solar irradiation. This device based on fluorescent dye‐doped polydimethylsiloxane collects sunlight, focuses the energy to a narrow wavelength region, and then transports that energy to embedded microchannels where the flowing reactants are converted.  相似文献   

7.
以苯乙酮作为模型底物,通过制备类球红杆菌(Rhodobacter sphaeroides)的载色体和分离纯化的胞内氧化还原酶混合液,构建了以类球红杆菌全细胞为催化剂、氧化还原酶为催化剂以及载色体与氧化还原酶偶合三种不对称还原反应体系,并通过向反应体系中加入最适氢供体乙酸钠和电子供体硫代硫酸钠提高产物的转化收率.通过检测目标产物的收率、对映体过量(ee)值和光学构型,分析了光控不对称还原的生物催化机理,发现光照可以改变胞内(S)-氧化还原酶和(R)-氧化还原酶的活性,从而产生不同构型的产物,加入电子供体和氢供体后,反应收率和ee值提高的原因是由于分别补充了细菌叶绿素分子Bchl失去的电子和NADPH再生所需的活性氢.  相似文献   

8.
Appropriate experimental platforms are required to clarify the structure–function relationships of membrane protein assemblies. In photosynthetic bacteria, light-harvesting complex 2 and light-harvesting/reaction center core complex play key roles in capturing and transferring light energy and facilitating subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly in the photosynthetic membrane. However, the mechanism through which this assembly influences the efficiency of energy conversion remains to be clarified. We review our recent studies that were conducted to evaluate the structure–function relationship of the supramolecular assembly of photosynthetic antenna complexes in various lipid bilayer systems, as well as the construction of novel systems of planar lipid membranes for use as experimental platforms.  相似文献   

9.
Hydrogen production by photosynthetic bacteria provides an efficient energy conversion method under low light intensity. However, under strong illumination, such as midday sunlight, the efficiency drops. This prevents the method from being applied industrially. To overcome this problem, we examined a method to thin out the excessive illumination. Light was given intermittently to reduce the total energy flux. The on/off ratio was set at 1/1 throughout the study, so that the time average of the light energy flux became half the continuous illumination. By keeping the time-average light flux constant (0.6 kW·m−2), the effects of the cycle period were examined in the range of hours to seconds. The hydrogen production rate was greatly affected by the cycle period, but cell growth and substrate consumption rates remained almost constant. The 30-min light/dark cycle (30 min on and 30 min off) provided the highest rate of hydrogen production (22 L·m−2·24 h−1). At the shorter cycles, the rate decreased except that there was a suboptimum at about 40 s. Under excessive light intensity (1.2 kW·m−2), the light-to-hydrogen conversion efficiency was greatly enhanced. The hydrogen production rate during the 30-min cycle was twice as high as during a 12-h cycle under the same conditions.  相似文献   

10.
Energy production and environmental pollution are the two major problems the world is facing today. The depletion of fossil fuels and the emission of harmful gases into the atmosphere leads to the research on clean and renewable energy sources. In this context, hydrogen is considered an ideal fuel to meet global energy needs. Presently, hydrogen is produced from fossil fuels. However, the most desirable way is from clean and renewable energy sources, like water and sunlight. Sunlight is an abundant energy source for energy harvesting and utilization. Recent studies reveal that photoelectrochemical (PEC) water splitting has promise for solar to hydrogen (STH) conversion over the widely tested photocatalytic approach since hydrogen and oxygen gases can be quantified easily in PEC. For designing light-absorbing materials, semiconductors are the primary choice that undergoes excitation upon solar light irradiation to produce excitons (electron-hole pairs) to drive the electrolysis. Visible light active semiconductors are attractive to achieve high solar to chemical fuel conversion. However, pure semiconductor materials are far from practical applications because of charge carrier recombination, poor light-harvesting, and electrode degradation. Various heteronanostructures by the integration of metal plasmons overcome these issues. The incorporation of metal plasmons gained significance for improving the PEC water splitting performance. This review summarizes the possible main mechanisms such as plasmon-induced resonance energy transfer (PIRET), hot electron injection (HEI), and light scatting/trapping. It also deliberates the rational design of plasmonic structures for PEC water splitting. Furthermore, this review highlights the advantages of plasmonic metal-supported photoelectrodes for PEC water splitting.  相似文献   

11.
The production of clean and renewable hydrogen through water splitting by using solar energy has received much attention due to the increasing global energy demand. We report an economic and artificial photosynthetic system free of noble metals, consisting of ultrathin CdS nanosheets as a photosensitizer and nickel‐based complex as a molecular catalyst. Emission quenching and flash photolysis studies reveal that this hybrid system allows for effective electron transfer from the excited CdS nanosheets to the nickel‐based complex to generate reduced intermediate species for efficient hydrogen evolution. Notably, the unique morphological and structural features of the ultrathin CdS nanosheets contribute to the highly efficient photocatalytic performance. As a consequence, the resulting system shows exceptional activity and stability for photocatalytic hydrogen evolution in aqueous solution with a turnover number (TON) of about 28 000 versus catalyst and a lifetime of over 90 h under visible light irradiation.  相似文献   

12.
A variety of aromatic nitro compounds were chemoselectively reduced to the corresponding anilines using conveniently prepared nanosized CdS as a photocatalyst under the sunlight and blue LED irradiation. The results demonstrated that synthesized CdS nanostructures have the potential to provide a promising visible light driven photocatalyst for chemoselective reduction of nitro aromatics in the presence of nitrile and carbonyl groups to the corresponding amines under both sunlight and blue LED irradiation. Photoreduction of nitro aromatics by the prepared nanosized CdS with high surface area was faster than when using the commercially available CdS under both sunlight and LED irradiation. Nanosized CdS photocatalyst was prepared by a simple method without any capping agent. X-ray diffraction (XRD), energy dispersive spectrometry (EDAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 absorption—desorption, diffuse reflectance spectroscopy (DRS), and flat band potential methods were employed for the characterization, which revealed that the prepared CdS nanoparticles have a well-resolved cubic structure with the size of around 10–30 nm and a band gap of 2.37 eV.  相似文献   

13.
Photosynthetic systems utilize hundreds of chlorophylls to collect sunlight and transport the energy to the reaction center with remarkably high quantum efficiency, however, the large size of the system together with the complex interactions among the components make it extremely challenging to understand the dynamics of light harvesting in large photosynthetic systems. To shed light on this problem, we present a structure-based theoretical framework that can be used to calculate transition rate matrix describing energy transport in photosynthetic systems and network clustering methods that provide simplified coarse-grained model revealing key structures guiding the light harvesting process. We constructed an effective model for energy transport in a Photosystem II supercomplex and applied several network clustering methods to generate coarse-grained kinetic cluster models for the system. Furthermore, we evaluated the performances of the network clustering methods, and show that a spectral clustering method and a minimum cut approach produce accurate coarse-grained models for the PSII-sc system. The results indicate that finding bottlenecks of energy transport is a crucial factor for reduced representations of photosynthetic light harvesting, and the overall work presented in this paper should provide a comprehensive theoretical framework to elucidate the dynamics of light harvesting in photosynthetic systems.  相似文献   

14.
Engineering living microorganisms to enhance green biomanufacturing for the development of sustainable and carbon-neutral energy strategies has attracted the interest of researchers from a wide range of scientific communities. In this study, we develop a method to achieve photosynthesis-mediated biomineralization of gold nanoparticles (AuNPs) inside Chlorella cells, where the photosynthesis-dominated reduction of Au3+ to Au0 allows the formed AuNPs to locate preferentially around the thylakoid membrane domain. In particular, we reveal that the electrons generated by the localized surface plasmon resonance of AuNPs could greatly augment hypoxic photosynthesis, which then promotes the generation and transferring of photoelectrons throughout the photosynthetic chain for augmented hydrogen production under sunlight. We demonstrate that the electrons from AuNPs could be directly transferred to hydrogenase, giving rise to an 8.3-fold enhancement of Chlorella cells hydrogen production independent of the cellular photosynthetic process under monochromatic 560 nm light irradiation. Overall, the photosynthesis-mediated intracellular biomineralization of AuNPs could contribute to a novel paradigm for functionalizing Chlorella cells to augment biomanufacturing.  相似文献   

15.
This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H2) and CO2 reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants. This review analyses the physical chemical properties of Cu2O (and CuO) and the possible strategies to tune them (doping, lattice strain). Combining Cu with other elements in multinary oxides or in composite photoelectrodes is also discussed in detail. Finally, a short overview on the possible applications of these materials is presented.  相似文献   

16.
The electronic properties of transition‐metal‐doped zinc sulfide (ZnS) have been investigated by using first‐principles calculations. Transition‐metal doping can allow electronic transitions at energies corresponding to visible‐light wavelengths, thus potentially resulting in increased photocatalytic efficiency under sunlight. In particular, our calculations show that transition‐metal atoms that produce little lattice strain, such as Co, Ni, Mn, and Fe, can be readily incorporated in ZnS. Due to their low formation energies and appropriate band energies, we predict that Ni‐ and Co‐doped ZnS will be promising materials for photocatalytic hydrogen production.  相似文献   

17.
杨正龙  卜弋龙  陈秋云 《化学进展》2011,23(12):2607-2616
太阳能电池能够将太阳能直接转化为电能,是利用太阳能资源的一种非常有效的手段。聚合物太阳能电池因成本低、重量轻、制备方便和可制成柔性器件的优点,已经成为该领域的研究热点之一。基于窄带隙共轭聚合物给体/富勒烯受体复合材料体系制得的太阳能电池的最高转换效率已经达到8.3%,而寻找性能更优异的聚合物给体材料是进一步提高光伏性能的关键因素。本文综述了近几年关于高效率窄带隙聚合物太阳能电池给体材料的研究进展,着重介绍了苯并噻二唑类共聚物、稠环噻吩类共聚物和吡嗪类共聚物等窄带隙聚合物给体材料体系及相应光伏器件的性能,分析了各种材料的优点和不足,并对今后这一领域的发展做了展望。  相似文献   

18.
Excitation energy transfer (EET) determines the fate of sunlight energy absorbed by light‐harvesting proteins in natural photosynthetic systems and photovoltaic cells. As previously reported (D. Kosenkov, J. Comput. Chem. 2016, 37(19), 1847), PyFREC software enables computation of electronic couplings between organic molecules with a molecular fragmentation approach. The present work reports implementation of direct fragmentation‐based computation of the electronic couplings and EET rates in pigment–protein complexes within the Förster theory in PyFREC. The new feature enables assessment of EET pathways in a wide range of photosynthetic complexes, as well as artificial molecular architectures that include light‐harvesting proteins or tagged fluorescent biomolecules. The developed methodology has been tested analyzing EET in the Fenna–Matthews–Olson (FMO) pigment–protein complex. The pathways of excitation energy transfer in FMO have been identified based on the kinetics studies. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye‐sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources—particularly minerals—which are needed to manufacture energy converters and storage devices on a multi‐TW scale.  相似文献   

20.
The use of sunlight as a renewable source of energy must increase in future. The potential methods of transformation and storage are on a different level of state of the art. The present article reviews the various approaches. Focus is on transformation and storage of sunlight as chemical energy by photocatalytic processes. Photosynthesis of green plants represents both example and prototype. Research interest and endeavor in artificial photosynthesis, in particular for photocatalytic splitting of water and photochemical transformation of carbon dioxide, have increased enormously. Silicon‐based photovoltaic has achieved industrial ripeness and broad application in everyday life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号