共查询到16条相似文献,搜索用时 63 毫秒
1.
为了分析删失数据,该文考虑变系数部分线性模型,此模型允许协变量对响应变量存在非线性影响.响应变量与协变量之间关系的统计模型通过线性结构来拟合是非常重要而且有益.对于删失数据,常用的统计方法不能直接应用于此模型.该文首先提出一类数据变换用以建立无偏条件期望.然后利用profile最小二乘方法,给出了模型中参数分量和非参数分量的profile最小二乘估计,并建立了这些估计的渐近正态性.最后通过数值例子来说明该文所提出的方法的有效性. 相似文献
2.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质. 相似文献
3.
纵向数据是在实际应用中很常见的一种数据类型,在解决实际问题时建立纵向数据模型,进行统计分析很实用。本文研究一类重要的纵向数据下部分线性回归模型,所分析的纵向数据是随机观测而得到的,根据纵向数据的特性构造模型中未知参数分量和未知函数的估计量,进而研究了估计量的渐近性质,通过实例分析,证实了该方法的有效性和可操作性,有很好的使用价值。 相似文献
4.
本文研究纵向数据下非参数部分带有测量误差的部分线性变系数模型的估计.利用B样条函数近似模型中的变系数函数,构造偏差修正的二次推断函数,得到模型中未知参数和变系数函数的估计.证明变系数函数估计量的相合性和参数估计量的渐近正态性.数值模拟和实例分析结果表明所提估计方法在有限样本下的有效性. 相似文献
5.
本文考虑纵向数据半参数回归模型,通过考虑纵向数据的协方差结构,基于Profile最小二乘法和局部线性拟合的方法建立了模型中参数分量、回归函数和误差方差的估计量,来提高估计的有效性,在适当条件下给出了这些估计量的相合性.并通过模拟研究将该方法与最小二乘局部线性拟合估计方法进行了比较,表明了Profile最小二乘局部线性拟合方法在有限样本情况下具有良好的性质. 相似文献
6.
7.
该文研究协变量随机缺失下半参数变系数部分线性模型的统计推断.利用逆概率加权最小二乘方法给出了模型中参数分量和非参数分量的估计,并证明了它们的渐近正态性.另外该文又提出了一个逆概率加权经验对数似然比统计量,并证明该统计量服从标准χ~2分布,从而构造了模型中参数分量的经验似然置信域.最后通过模拟研究和实例分析说明该文提出的方法具有较好的有限样本性质. 相似文献
8.
9.
考虑纵向数据下半参数回归模型:yij=x′ijβ+g(tij)+eij,i=1,…,n,j=1,…,mi.基于最小二乘法和一般的非参数权函数方法给出了模型中参数β和回归函数g(·)的估计,并在适当条件下证明了参数分量β的估计量的强收敛速度和未知函数g(·)的估计量的一致强收敛速度. 相似文献
10.
张巍巍 《数学的实践与认识》2021,(3):128-135
研究半参数部分线性变系数模型的有偏估计,当回归模型参数部分自变量存在多重共线性时,在随机线性约束条件下,融合Profile最小二乘估计、加权混合估计和Liu估计构造回归模型参数分量改进的加权混合Profile-Liu估计,并在一定正则条件下证明估计量的渐近性质,最后利用蒙特卡洛数值模拟验证所提出估计量的有限样本表现性. 相似文献
11.
Consider the semiparametric varying-coefficient heteroscedastic partially linear model Y i = Xτiβ + Zτiα(Ti) + σiei,1 ≤ i ≤ n,where σ 2 i = f(Ui),β is a p × 1 column vector of unknown parameter,(Xi,Zi,Ti,Ui) are random design points,Y i are the response variables,α(·) is a q-dimensional vector of unknown functions,e i are random errors.For both cases that f(·) is known and unknown,we propose the empirical log-likelihood ratio statistics for the parameter β.For each case,a nonparametric version of Wilks’ theorem is derived.The results are then used to construct confidence regions of the parameter.Simulation studies are carried out to assess the performance of the empirical likelihood method. 相似文献
12.
本文使用一种带有乘积调整的半参方法估计部分线性模型的非参数部分并给出所得估计的渐近性质。与传统的非参估计方法相比,我们所使用的半参数方法能够有效的降低所得估计的偏差,而方差不受影响。因此在积分均方误差(MISE)的意义下,该半参数方法要优于传统的估计方法。数值模拟也表明了这一点. 相似文献
13.
In this paper, the semiparametric generalized partially
linear models (GPLMs) for longitudinal data is studied. We approximate the
nonparametric function in the GPLMs by a regression spline, and use quadratic
inference functions (QIF) to take the within-cluster correlation into account
without involving direct estimation of nuisance parameters in the correlation
matrix. We establish the asymptotic normality of the resulting estimators.
The finite sample performance of the proposed methods is evaluated through
simulation studies and a real data analysis. 相似文献
14.
15.
GemaiChen Jin-hongYou 《应用数学学报(英文版)》2005,21(2):177-192
Consider a repeated measurement partially linear regression model with an unknown vector parameter β, an unknown function g(.), and unknown heteroscedastic error variances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of β, we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that it improves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given to determine the number of iterations. We also show that when the number of replicates is less than or equal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of those in [2] to the case of semiparametric regressions. 相似文献
16.
??In this paper, semiparametric estimation of a regression function in the third order partially linear autoregressive model with first order autoregressive errors is mainly studied. We suppose that the regression function has a parametric framework, and use the conditional least squares method to obtain the parameter estimators. Then semiparametric estimators of the regression function can be given by combining with the nonparametric kernel function adjustment. Furthermore, under certain conditions, the consistency of the estimators is proved. Finally, simulation research is presented to evaluate the
effectiveness of the proposed method. 相似文献