首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The coupling of the elastoplastic finite element and elastic boundary element methods for two-dimensional frictionless contact stress analysis is presented. Interface traction matching (boundary element approach), which involves the force terms in the finite element analysis being transformed to tractions, is chosen for the coupling method. The analysis at the contact region is performed by the finite element method, and the Lagrange multiplier approach is used to apply the contact constraints. Since the analyses of elastoplastic problems are non-linear and involve iterative solution, the reduced size of the final system of equations introduced by combining the two methods is very advantageous, especially for contact problems where the nature of the problem also involves an iterative scheme.  相似文献   

2.
An Eulerian fixed mesh finite element technique applicable to metal-forming processes operating under steady-state condition is presented. Different specific features are demonstrated by solving plane-strain rolling problem. The advantage of the Eulerian fixed mesh technique over the updated Lagrangian one in modelling the elastic flattening of rolls is demonstrated. The obtained pressure distribution and the stress field are compared with other numerical and/or experimental results available in the literature with which good agreement is found. It is found that the consideration of the elastic flattening of rolls decreases the difference between the measured and the computed results.  相似文献   

3.
The fundamental part of the contact stress problem solution using a finite element method is to locate possible contact areas reliably and efficiently. In this research, a remeshing technique is introduced to determine the contact region in a given accuracy. In the proposed iterative method, the meshes near the contact surface are modified so that the edge of the contact region is also an element’s edge. This approach overcomes the problem of surface representation at the transition point from contact to non-contact region. The remeshing technique is efficiently employed to adapt the mesh for more precise representation of the contact region. The method is applied to both finite element and boundary element methods. Overlapping of the meshes in the contact region is prevented by the inclusion of displacement and force constraints using the Lagrange multipliers technique. Since the method modifies the mesh only on the contacting and neighbouring region, the solution to the matrix system is very close to the previous one in each iteration. Both direct and iterative solver performances on BEM and FEM analyses are also investigated for the proposed incremental technique. The biconjugate gradient method and LU with Cholesky decomposition are used for solving the equation systems. Two numerical examples whose analytical solutions exist are used to illustrate the advantages of the proposed method. They show a significant improvement in accuracy compared to the solutions with fixed meshes.  相似文献   

4.
This paper considers the weighted extended b-splines as basis function for finite element method in electromagnetics and compares with the standard finite element method applied to the two-point boundary value problems with different boundary conditions. This new approach, which provides more accurate results than standard finite element method, is presented to compare other numerical techniques and applied to one-dimensional electromagnetic problems. Computed results are compared with other numerical results in literature.  相似文献   

5.
吴正朋  余德浩 《计算数学》2004,26(2):237-246
In this paper, we combine a finite element approach with the natural boundary element method to stduy the weak solvability and Galerkin approximations of a class of semilinear exterior boundary value problems. Our analysis is mainly based on the variational formulation with constraints. We discuss the error estimate of the finite element solution and obtain the asymptotic rate of convergence O(h^n) Finally, we also give two numerical examples.  相似文献   

6.
提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.  相似文献   

7.
In this paper, based on the natural boundary reduction advanced by Feng and Yu, we couple the finite element approach with the natural boundary element method to study the weak solvability and Galerkin approximation of a class of nonlinear exterior boundary value problems. The analysis is mainly based on the variational formulation with constraints. We prove the error estimate of the finite element solution and obtain  相似文献   

8.
Numerous laboratory experiments indicate that the use of a layer or a coating material attached to the conventional steel body reduce the magnitude of contact stress. Therefore in this paper we solve numerically the wheel–rail contact problem with friction and wear assuming the existence of a small elastic layer on the rail surface. Material properties of this layer are changing with its depth. The friction between the bodies is governed by Coulomb law. In contact zone Archard's law of wear is assumed. We take special features of this rolling contact problem and use so-called quasistatic approach to solve this contact problem. Finite element method is used as a discretization method. The numerical results including the distribution of normal stress along the contact boundary are provided and discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
本文对比研究了关于弹性波模拟中的曲边地表形状处理的两种方法,一种是用给定的实际介质数值划定的地表形状,另一种是用样条插值逼近地表形状.本文采用有限元方法进行弹性波数值模拟,给出了基于这两种方法计算的数值例子,并对结果进行了分析比较.结果表明使用后一种方法对地表进行处理时,地表人工离散产生的干扰明显减少,优于前一种方法.  相似文献   

10.
《计算数学(英文版)》2023,41(4):771-796
We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space. The model describes the motion of the film\slash vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line. We present a weak formulation for the problem, in which the contact angle condition is weakly enforced. By using piecewise linear elements in space and backward Euler method in time, we then discretize the formulation to obtain a parametric finite element approximation, where the interface and its contact line are evolved simultaneously. The resulting numerical method is shown to be well-posed and unconditionally energy-stable. Furthermore, the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form. Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.  相似文献   

11.
本文将半解析边界元一半解析有限无结合法用于介质与结构的动力相互作用研究:用半解析边界元法分析具有复杂地表面的半无限介质,用半解析有限元法分析具有任意截面形状的柱体结构,利用介质与结构交界面上的位移相容条件和力平衡条件,将介质与结构联系起来。联立京解上述半解析边界元方程和半解析有限元方程,对应每一时间步进,可同时求出介质与结构交界面上的位移、速度、加速度和相互作用力以及地表面的运动情况.与目前广泛研究的边界元—有限元结合法相比,本方法在介质与结构二个个区域各降低了一维空间,因而离散单元数和计算工作量大幅度减少,人工输入数据非常简单.文中还考虑了地下结构的长跨比效应、厚度效应和介质效应.  相似文献   

12.
In this paper, we investigate the numerical solution of the three-dimensional (3D) nonlinear tempered fractional integrodifferential equation which is subject to the initial and boundary conditions. The backward Euler (BE) method in association with the first-order convolution quadrature rule is employed to discretize this equation for time, and the Galerkin finite element method is applied for space, which is combined with an alternating direction implicit (ADI) algorithm, in order to reduce the computational cost for solving the three-dimensional nonlocal problem. Then a fully discrete BE ADI Galerkin finite element scheme can be obtained by linearizing the non-linear term. Thereafter we prove a positive-type lemma, from which the stability and convergence of the proposed numerical scheme are derived based on the energy method. Numerical experiments are performed to verify the effectiveness of the proposed approach.  相似文献   

13.
The general formulation of the transient elastodynamic second boundary value problem in an isotropic linear elastic body with a crack of arbitrary shape by combining the boundary integral equation method and the Laplace transform with respect to time is presented in this paper. Both finite and infinite elastic bodies are considered. A numerical solution of the transformed boundary integral equations is proposed.  相似文献   

14.
The methods of dealing with some key problems in analyzing a rotary forging process with a finite element method are given. The presented mechanical model of the finite element analysis is in accordance with the actual conditions of the rotary forging process. A three-dimensional rigid–plastic finite element analysis code is developed in FORTRAN language and used to analyze the rotary forging process of a ring workpiece. Velocity fields and stress–strain fields of both contact and non-contact zones of the ring workpiece in the rotary forging are obtained. The deformation mechanism and metal flow laws of the contact zone surface of the ring workpiece in the rotary forging process are revealed. The pressure distributions of the contact surface along the radial and tangential directions and effects of rotary forging parameters on deformation characteristics are given.  相似文献   

15.
In this paper, the blood flow problem is considered in a blood vessel, and a coupling system of Navier–Stokes equations and linear elastic equations, Navier–Lame equations, in a cylinder with cylindrical elastic shell is given as the governing equations of the problem. We provide two finite element models to simulating the three-dimensional Navier–Stokes equations in the cylinder while the asymptotic expansion method is used to solving the linearly elastic shell equations. Specifically, in order to discrete the Navier–Stokes equations, the dimensional splitting strategy is constructed under the cylinder coordinate system. The spectral method is adopted along the rotation direction while the finite element method is used along the other directions. By using the above strategy, we get a series of two-dimensional-three-components (2D-3C) fluid problems. By introduce the S-coordinate system in E3 and employ the thickness of blood vessel wall as the expanding parameter, the asymptotic expansion method can be established to approximate the solution of the 3D elastic problem. The interface contact conditions can be treated exactly based on the knowledge of tensor analysis. Finally, numerical test shows that our method is reasonable.  相似文献   

16.
边界层问题的小波—有限元解   总被引:5,自引:0,他引:5  
本文将小波分析与有限元法结合起来,建立了一种小波-有限元计算格式,并用该算法计算了一个典型的边界层问题,探讨了寻找边界层位置的过程以及计算边界层区的内部解及外部解的步骤。计算结果表明,用该法寻找的边界层位置以及所求得的内部解与真实结果完全符合。  相似文献   

17.
A mixed finite element method for approximating eigenpairs of IV order elliptic eigenvalue problems with Dirichlet boundary conditions has been given. The method can be applied to the vibration analysis of anisotropic/orthotropic/isotropic/biharmonic plates. Computer implementation procedures for this mixed method are given along with the results of numerical experiments.  相似文献   

18.
In this paper, a numerical approach for analyzing interacting multiple cracks in infinite linear elastic media is presented. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks, the original problem is divided into a homogeneous problem (the one without cracks) subjected to remote loads and a multiple crack problem in an unloaded body with applied tractions on the crack surfaces. Thus, the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements proposed recently by the author. Test examples are given to illustrate that the numerical approach is very accurate for analyzing interacting multiple cracks in an infinite linear elastic media under remote uniform stresses. In addition, the displacement discontinuity method with crack-tip elements is used to analyze a multiple crack problem in a finite plate. It is found that the boundary element method is also very accurate for investigating interacting multiple cracks in a finite plate. Specially, a generalization of Bueckner’s principle and the displacement discontinuity method with crack-tip elements are used to analyze multiple circular arc crack problems in infinite plate in tension (including: Two Collinear Circular Arc Cracks, Three Collinear Circular Arc Cracks, Two Parallel Circular Arc Cracks, Three Parallel Circular Arc Cracks and Two Circular Arc Cracks) in a plane elasticity plate. Many results are given.  相似文献   

19.
构造具有广义边界条件的四阶线性抛物型方程的混合间断时空有限元格式,利用混合有限元方法将高阶方程降阶,利用空间连续而时间允许间断的时空有限元方法离散方程,证明了离散解的存在唯一性,稳定性和收敛性,并给出数值算例验证了方法的有效性.  相似文献   

20.
The authors analyze the tooth surface contact and stresses for double circular-arc helical gear drives. The geometry of such gear drives has been represented by the authors in their previous paper [1]. The proposed approach is based on application of (i) computerized simulation of meshing and contact of loaded gear drives, and (ii) the finite element method. Load share between the neighboring pairs of teeth is based on the analysis of position errors caused by surface mismatch and elastic deformation of teeth. The authors have investigated the conditions of load share under a load and determined the real contact ratio for aligned and misaligned gear drives, respectively. Elastic deformation of teeth and the stress analysis of the double circular-arc helical gears are accomplished by using the finite element method. The finite element models for the pinion and gear are constructed, respectively. Contact pressure is spread over elliptical area. The stress analysis for aligned and misaligned gear drives, respectively, has been performed. The numerical results have been compared with those obtained by other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号