首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorpropamide ((4-chloro-N-(propylamino)-carbonyl)-benzenesulfonamide) belongs to compounds having sulfonylurea group and is widely used as an oral antidiabetic agent. In this work differential scanning calorimetry (DSC) was used during pre-formulation of chlorpropamide tablets to determine the drug-excipients compatibility. The DSC curves of chlorpropamide and binary mixtures with excipients (sodium croscarmellose, sodium lauryl sulfate, microcrystalline cellulose, magnesium stearate and calcium carbonate) showed that chlorpropamide exhibited interaction with magnesium stearate and sodium lauryl sulfate. The binary mixtures of chlorpropamide–magnesium stearate presented a single endothermic process at 96–108 °C and chlorpropamide–sodium lauryl sulfate showed a wide endotherm at 99–120 °C.  相似文献   

2.
This work exemplifies a general method of studying the drug excipient interactions, with the aim of predicting rapidly and inexpensively the long term stability of their mixtures. We study the physico-chemical properties of a drug (indomethacin) in the solid state and in different combinations with several excipients (PVP=polyvinylpyrrolidone, MGST=magnesium stearate, Avicel©). We compare the properties of pure compounds (untreated, or moisture/temperature conditioned) with those of binary mixtures drug:excipient which underwent the same treatment. The purpose is to find indications of interactions within the mixtures, which means a potential incompatibility of the excipient. Both morphological and thermal properties are sensitive to interactions which leave mostly unmodified the IR spectra and the X-rays patterns. In particular, we find that indomethacin does interact with PVP and MGST, but is certainly compatible with Avicel©.  相似文献   

3.
The thermal properties of verapamil hydrochloride (VRP) and its physical association as binary mixtures with some common excipients were evaluated. Thermogravimetry (TG) was used to determine the thermal mass loss, as well as to study the kinetics of VRP thermal decomposition, using the Flynn-Wall-Ozawa model. Based on their frequent use in pharmacy, five different excipients (microcrystalline cellulose, magnesium stearate, hydroxypropyl methylcellulose, polyvinylpyrrolidone and talc) were blended with VRP. Samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (m/m). DSC curves for pure VRP presented an endothermic event at 143 ± 2 °C (ΔHmelt = 132 ± 4 J g−1), which corresponds to the melting (literature Tm = 143.7 °C, ΔHmelt = 130.6 J g−1). Comparisons among the observed results for each compound and their binary physical mixtures presented no relevant changes. This suggests no interaction between the drug and excipient.  相似文献   

4.

Alogliptin (ALG) is a hypoglycemic drug used in diabetes which inhibits the enzyme dipeptidyl peptidase-4 (DPP-4), preventing the degradation of incretins, stimulating insulin secretion. The physicochemical characteristics of ALG were evaluated by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (SEM/EDS). The compatibility studies were carried out between ALG and excipients (physical mixtures, 1:1) using DSC, TG, diffuse reflectance Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and hot-stage microscopy. ALG presented purity near to 99%, melted in the range of 179.4–187.2 °C, followed by decomposition which started in 198.0 °C. SEM/EMS analysis of ALG presented irregular crystals and traces of impurities as copper and lead. DSC investigations obtained by physical mixtures showed minor alterations in the melting ranges of ALG with mannitol, magnesium stearate and commercial tablets. Solubilization of ALG in the fused excipient was observed by hot-stage microscopy between mannitol and ALG, and in tablets. The interaction observed in the mixture with magnesium stearate is due to the melting of the excipient and drug separately, first the excipient and then the drug. FTIR showed additional bands related to the excipients. XRPD proved that ALG has a crystal form and no alterations in the ALG profile were observed after the mixtures. ALG was compatible with all excipients tested. These results were important to understand the characteristics, stability and compatibility of the drug, and proved to be useful in preformulation studies.

  相似文献   

5.
The thermal techniques of analysis were used to assess the compatibility between ibuprofen (IB) and some excipients used in the development of extended released formulations. This study is a part of a systematic study undertaken to find and optimizes a general method of detecting the drug–excipient interactions, with the aim of predicting rapidly and assuring the long-term stability of pharmaceutical product and speeding up its marketing. The thermal properties of IB and its physical association as binary mixtures with some common excipients were evaluated by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry. FT-IR spectroscopy and X-ray powder diffraction (XRPD) were used as complementary techniques to adequately implement and assist in interpretation of the thermal results. Based on their frequent use in preformulations nine different excipients: starch; microcrystalline cellulose (PH 101 and PH 102); colloidal silicon dioxide; lactose (monohydrate and anhydre); polyvinylpyrrolidone; magnesium stearate and talc were blended with IB. The samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). The TG/DSC curves of the IB have shown a single stage of mass loss between 175 and 290 °C, respectively, an endothermic peak at 78.5 °C, which corresponds to the melting (literature T m = 75–78 °C).  相似文献   

6.

Abstract  

Drug–drug cocrystals of imatinib mesylate with several cocrystal formers, i.e. 5-chlorouracil, 5-fluorouracil, hydroxyurea, 5-fluorocytosine, N-acetylcytosine, chlorogenic acid, dacarbazine, curcumin, creatine, orotic acid, l-cysteine, glutathione, and caffeic acid, were prepared from mixtures by cogrinding or solvent cocrystallization. The samples prepared were analyzed by FTIR, DSC, and XRPD. Formation of cocrystals with different stoichiometry was observed. Novel cocrystals of imatinib mesylate with 5-fluorouracil or hydroxyurea were identified, characterized, and selected by the solid form screening approach. These cocrystals were non-hygroscopic and chemically and physically stable to thermal stress under the testing conditions.  相似文献   

7.
The 4,6-bis[2′(diethylamino)ethoxy]2,8,10-trimethylpyrido[3,2-g]quinoline (BG 637) is one of the compound from the pyrido[3,2-g] quinolines family. This compound had in vitro activity against the resistant cells and can reverse the multidrug resistance developed during the chemotherapeutic treatments. To characterize BG 637, techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectrometer (FTIR), ultra violet spectrophotometry (UV), gas chromatography coupled with mass spectrometry (GC/MS), nuclear magnetic resonance (NMR) and X-ray powder diffraction (XRPD) were used. Several of them were also used to show the stability of the drug during various storage conditions. DSC, FTIR and UV were used as screening techniques for assessing the compatibility of BG 637 with several commonly used pharmaceutical excipients. We compared the properties of the pure drug with those of binary mixture drug/excipient. Studied excipients were lactose monohydrate, microcrystalline cellulose, polyvinylpyrrolidone, sodium croscarmellose and magnesium stearate. Melting temperature and enthalpy of BG 637 in binary mixtures were similar to theoretical values. These results showed that BG 637 is a very stable compound and compatible with several pharmaceutical excipients.  相似文献   

8.
This work is part of a systematic study undertaken to find and optimize a general method of detecting the drug-excipient interactions, with the aim of predicting rapidly and inexpensively the long term stability of a pharmaceutical product and speed up its marketing. Here, in particular, the compatibility of haloperidol with several excipients (PVP, magnesium stearate and α-lactose) in binary and ternary mixtures, both as prepared and ball-milled, has been assessed by thermal methods, electron microscopy, IR spectroscopy and X-ray diffraction. The differences between the experimental behaviour of the systems and that expected as weighted average of similarly treated pure components are interaction indicators. The DSC has proven to be, among the selected analytical techniques, the most sensitive and specific in assessing the compatibility. A strong interaction has been observed between PVP and haloperidol. It is favoured by the mechanical stress and is more evident in the composition 20:80. On the contrary, α-lactose and magnesium stearate were found to be compatible with the drug.  相似文献   

9.
The thermal behavior of binary mixtures of paracetamol and a polymeric excipient (microcrystalline cellulose, hydroxypropylmethylcellulose and cross-linked poly(vinylpyrrolidone)) was investigated. The physical mixtures, ranging from 50 to 90% by mass of drug, were submitted to a heating-cooling-heating program in the 35–180°C temperature range. Solid-state analysis was performed by means of differential scanning calorimetry (DSC), hot stage microscopy (HSM), micro-Fourier transformed infrared spectroscopy (MFTIR), and scanning electron microscopy (SEM). The polymeric excipients were found to address in a reproducible manner the recrystallization of molten paracetamol within the binary mixture into Form II or Form III. The degree of crystallinity of paracetamol in the binary mixtures, evaluated from fusion enthalpies during the first and second heating scans, was influenced by the composition of the mixture, the nature of the excipient and the thermal history. In particular, DSC on mixtures with cross-linked poly(vinylpyrrolidone) and hydroxypropylmethylcellulose with drug contents below 65 and75%, respectively, evidenced the presence only of amorphous paracetamol after the cooling phase. Microcrystalline cellulose was very effective in directing the recrystallization of molten paracetamol as Form II. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We apply a range of techniques (thermal methods, microscopy, X-ray diffraction, IR spectroscopy) to characterize a drug (atenolol), several excipients (PVP=polyvinylpyrrolidone, MGST=magnesium stearate, Avicel©) and drug-excipients mixtures either as prepared, annealed, and exposed to moisture. We compare the data of the mixtures with those computed from a weighted average of similarly treated pure compounds to find evidence of drug properties modified by the interaction with the excipient. We find that thermal response is by far the most sensitive indicator of interaction while IR is the least sensitive one. Avicel© has essentially no interaction with atenolol, while MGST modifies significantly only the thermal response of the drug in the MGST-rich mixtures. PVP interacts strongly with atenolol, and this interaction appears to be mediated by the substantial amount of hydration water the excipient brings in its mixtures with a water-free drug.  相似文献   

11.
In this work, TG/DTG and DSC techniques were used to the determination of thermal behavior of prednicarbate alone and associated with glyceryl stearate excipient (1:1 physical mixture). TG/DTG curves obtained for the binary mixture showed a reduction of approximately 37 °C to the thermal stability of drug ( T\textdm/\textdt = 0 \textDTG\textMax T_{{{\text{d}}m/{\text{d}}t = 0\,{\text{DTG}}}}^{\text{Max}} ). The disappearance of stretching band at 1280 cm−1as C–O, carbonate group) and the presence of streching band with less intensity at 1750 cm−1s C–O, ester group) in IR spectrum obtained to the binary mixture submitted at 220 °C, when compared with IR spectrum of drug submitted to the same temperature, confirmed the chemical interaction between these substances due to heating. Kinetics parameters of decomposition reaction of prednicarbate were obtained using isothermal (Arrhenius equation) and non-isothermal (Ozawa) methods. The reduction of approximately 45% of activation energy value (E a) to the first step of thermal decomposition reaction of drug in the 1:1 (mass/mass) physical mixture was observed by both kinetics methods.  相似文献   

12.
This paper is the first one of a research project aimed to find and optimize methods by which drug-excipient compatibility can be reliably and quickly assessed. A number of experimental techniques (simultaneous TG-DSC, FT-IR spectroscopy, X-ray powder diffraction, scanning electron microscopy) have been used to investigate the compatibility between a novel tricyclic β-lactam antibiotic developed by GlaxoWellcome (now GlaxoSmithKline), GV118819x, and some commonly used excipients (poly(vinylpyrrolidone), magnesium stearate and α-lactose). Binary mixtures of two different compositions have been analyzed: drug:excipient=80:20 and 20:80 (mass/mass). Both qualitative and quantitative interaction indicators have been identified. It is shown that simultaneous thermal analysis is the best suited technique in the search of interaction indicators. With a proper selection of experimental conditions it is able to reveal the thermal changes brought about by the early stages of interaction, i.e. those occurring during the measurement on physical mixtures not previously annealed under stress conditions. Such an ability is discussed, in particular, with respect to the role of the water vapour, which has been found to be a critical parameter for all our systems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Thermal analysis is a routine method for analysis of drugs and substances of pharmaceutical interest. Thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) are thermoanalytical methods which offer important information about the physical and chemical properties of drugs (purity, stability, phase transition, polymorphism, compatibility, kinetic analysis, etc.). This work exemplifies a general method of studying the drug-excipient interactions with the aim of predicting rapidly and inexpensively the long thermal stability of their mixtures. The TG/DTG and DSC were used as screening techniques for assessing the compatibility between indomethacin (IND) and its physical associations as binary mixtures with some common excipients. Based on their frequent use in preformulations eleven different excipients: corn starch, microcrystalline cellulose (PH 101; PH 102), colloidal silicon dioxide, lactose (monohydrate and anhydre), polyvinilpyrrolidone K30, magnesium stearate, talc, stearic acid, and manitol were blended with IND. The samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). In order to investigate the possible interactions between the components, the thermal curves of IND and each selected excipient were compared with those of their 1:1 (w/w) physical mixtures. FT-IR spectroscopy and X-ray powder diffraction were used as complementary techniques to adequately implement and assist in interpretation of thermal results. On the basis of thermal results, confirmed by FT-IR and X-ray analyses, a possible interaction was found between IND with polyvinylpyrrolidone K30, magnesium stearate, and stearic acid.  相似文献   

14.
The compatibility of aceclofenac with various tableting excipients was investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The excipients applied in the direct pressing retard tablets were Carbopol 940, hydroxypropyl-methyl-cellulose, microcrystalline cellulose, Aerosil 200 and magnesium stearate. The ingredients alone and their 1:1 (w/w) binary mixtures were investigated before and after accelerated storage. An interaction was observed only between aceclofenac and magnesium stearate. The DSC and FT-IR examinations indicated formation of the magnesium salt of aceclofenac. For the other mixtures, there was no incompatibility between the components.  相似文献   

15.
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T onset value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T peak DTG) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.  相似文献   

16.
17.
Differential scanning calorimetry was used to examine the thermal behaviour of mixtures of the drug prochlorperazine with standard excipients, to assess potential interactions, and of mixtures with cyclodextrins, to investigate inclusion complexation which could increase the photostability of the drug. For most of the excipients (magnesium stearate, stearic acid, Explotab®, Ac-Di-Sol®, Encompress® and Ludipress®, lactose and Starch 1500) disappearance or broadening of the melting endotherm of the drug indicated interactions. Lubritab® was the only 'inert' excipient tested. Mixtures of prochlorperazine and the cyclodextrins gave incomplete inclusion complexation as shown by only partial disappearance of the melting endotherm of the drug.  相似文献   

18.
The thermoanalytical curves (TA), i.e. TG, DTG and DTA for pure cephalexin and its mixtures with talc, magnesium stearate, starch and microcrystalline cellulose, respectively, were drawn up in air and nitrogen at a heating rate of 10 °C min−1. The thermal degradation was discussed on the basis of EGA data obtained for a heating rate of 20 °C min−1. Until 250 °C, the TA curves are similar for all mixtures, up this some peculiarities depending on the additive appears. These certify that between the pure cephalosporin and the excipients do not exists any interaction until 250 °C. A kinetic analysis was performed using the TG/DTG data in air for the first step of cephalexin decomposition at four heating rates: 5, 7, 10 and 12 °C min−1. The data processing strategy was based on a differential method (Friedman), an integral method (Flynn–Wall–Ozawa) and a nonparametric kinetic method (NPK). This last one allowed an intrinsic separation of the temperature, respective conversion dependence on the reaction rate and less speculative discussions on the kinetic model. All there methods had furnished very near values of the activation energy, this being an argument for a single thermooxidative degradation at the beginning (192–200 °C).  相似文献   

19.
Desloratadine (DL) is a selective antagonist of the histamine H1 receptor, which has been widely used to treat allergic symptoms, and stands out from other drugs in this therapeutic class because it does not cause sedative effects. In the present study, the physico-chemical properties of DL were fully characterized using six analytical techniques such as Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TG/DTG), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The DSC curve shows a sharp endothermic event at 158.4 °C, and the TG/DTG curve presents two decomposition events between 178.4 and 451.9 °C. A compatibility study involving DL and nine pharmaceutical excipients generally used in pharmaceutical formulations was performed. Physical binary mixtures of DL with each excipient were prepared in a 1:1 (w/w) ratio. After preparation, the samples were analyzed immediately and the results reveal solid-state interaction with anhydrous lactose, microcrystalline cellulose, magnesium stearate, and stearic acid.  相似文献   

20.
Differential scanning calorimetry (DSC) is a primary technique for measuring the thermal properties of materials, which reflects the physico-chemical properties of drug substances. In the present study, it is used as a screening technique for assessing the compatibility of sitagliptin with some currently employed pharmaceutical excipients. The influence of processing conditions and their effects (simple blending, co-grinding or kneading) on drug stability was evaluated. Sitagliptin showed a sharp endothermic peak at 212.1 °C with an enthalpy change of 131.5 J g?1 indicating melting of drug. Facile transformation of dehydrated sitagliptin to monohydrate form was observed in some mixtures, disappearance of sharp melting endothermic peak of sitagliptin was observed in some mixtures. On the basis of DSC results, sitagliptin was found to be compatible with micro crystalline cellulose, croscarmellose, and pregelatinized starch. Some excipient interaction was observed with magnesium stearate, ascorbic acid, and citric acid. X-ray diffractometry and FT-IR were used as supportive tools in interpreting the DSC results. Overall, the excipients selected were compatible with the API and the mixtures are stable within the tested conditions. These results would be useful for formulation development of the film coated tablets of sitaglitptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号