首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

2.
A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g?1 and 0.273 L mg?1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL?1 of Hg(II), and the relative standard deviation is <7.2 % (for n?=?3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.
Figure
Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.  相似文献   

3.
We describe a solid phase extractor for selective separation and preconcentration of Hg(II) ion. It was prepared by immobilizing the adduct of diethylenetriamine and thiourea on silica gel. The effects of solution acidity, preconcentration time, sample flow rate and volume were optimized. The results show that Hg(II) can be selectively extracted from acidic solutions and in presence of common other metal ions. The adsorbent is stable, can be reused more than 10 times, and the maximum adsorption capacity is 23 mg g?1. Hg(II) was quantified by inductively coupled plasma optical emission spectrometry. The method has a detection limit of 23 ng L?1, and the relative standard deviation is <2 %. The procedure was validated by analyzing two standard materials (river sediment and hair powder), and was successfully applied to the preconcentration of Hg(II) in real samples.
Figure
A solid phase extractor was firstly prepared by immobilizing DETA-TU (equimolar adduct of diethylenetriamine and thiourea) on the silica gel, which was applied to selectively separate/preconcentrate trace Hg(II) from real samples  相似文献   

4.
We report a simple, cost-effective, and label-free detection method, consisting of a platelet-derived growth factor (PDGF) binding aptamer and hydrophobic Ru(II) complex as a sensor system for PDGF. The binding of PDGF with the aptamer results in the weakening of the aptamer–Ru(II) complex, monitored by luminescence signal. A substantial enhancement in the luminescence intensity of Ru(II) complex is observed in the presence of aptamer due to the hydrophobic interaction. Upon addition of PDGF, the luminescence intensity is decreased, due to the stronger interaction between the aptamer and PDGF resulting in the displacement of Ru(II) complex to the aqueous solution. Our assay can detect a target specifically in a complex medium such as the mixture of proteins, at a concentration of 0.8 pM.
Figure
?  相似文献   

5.
We report on an electrochemical aptasensor for the ultrasensitive determination of thrombin. A glassy carbon electrode modified with a graphene-porphyrin nanocomposite exhibits excellent electrochemical activity and can be used as a redox probe in differential pulse voltammetry of the porphyrin on its surface. The thrombin aptamer is then immobilized via p-stacking interactions between aptamer and graphene and π-π stacking with porphyrin simultaneously. The resulting electrochemical aptasensor displays a linear response to thrombin in the 5–1,500 nM concentration range and with a limit of detection of 0.2 nM (at an S/N of 3). The sensor benefits from the synergetic effects of graphene (with its high conductivity and high surface area), of the porphyrin (possessing excellent electrochemical activity), and of the aptamer (with its high affinity and specificity). This kind of aptasensor conceivably represents a promising tool for bioanalytical applications.
Figure
The representation of the sensing procedure for analysis of thrombin based on the TA/GN-Por/GCE by an electrochemical strategy  相似文献   

6.
We present an electrochemical aptasensor for rapid and ultrasensitive determination of the additive bisphenol A (BPA) and for screening drinking water for the presence of BPA. A specific aptamer against BPA and its complementary DNA probe were immobilized on the surface of a gold electrode via self-assembly and hybridization, respectively. The detection of BPA is mainly based on the competitive recognition of BPA by the immobilized aptamer on the surface of the electrode. The electrochemical aptasensor enables BPA to be detected in drinking water with a limit of detection as low as 0.284 pg?mL?1 in less than 30 min. This extraordinary sensitivity makes the method a most powerful tool for on-site monitoring of water quality and food safety.
Figure
A novel electrochemical aptasensor was developed for rapid and ultrasensitive detection of bisphenol A (BPA) and screening of BPA in drinking water using the specific aptamer against BPA.  相似文献   

7.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

8.
We report on a rapid method for the detection of Salmonella O8. It does not require an enrichment step but rather uses an aptamer as a probe that was selected by system evolution of ligands by exponential enrichment (SELEX) assay. Firstly, aptamer against Salmonella O8 was selected from a 78 bp random DNA library that was prepared in-vitro. The binding ability of the aptamers to target bacterium was examined by aptamer-linked immobilized sorbent assay. A high affinity aptamer was successfully selected from the initial random DNA pool, and its secondary structure was also investigated. Next, this high affinity aptamer B10 was used to recognize Salmonella O8 via fluorescence microscopy. The selected aptamer has a high specificity and high affinity against its target. We believe that the resulting fluorescence in-situ labeling assay is a potentially useful alternative in rapid screening and detection of foodborne pathogens.
Figure  相似文献   

9.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

10.
Xu Hun  Zhouping Wang 《Mikrochimica acta》2012,176(1-2):209-216
A sensitive method is presented for the detection of L-argininamide. It is based on the amplification of the hydrolysis of S1 nuclease of single-stranded regions of an aptamer-target complex. The S1 nuclease, which is sequence-independent, is used to “recycle” target molecules, thus leading to strongly enhanced chemiluminescence (CL). L-Argininamide was chosen as model analyte. The DNA aptamer and its complementary DNA were labeled with the CL reagent N-(4-aminobutyl)-N-ethylisoluminol (ABEI). The DNA complementary to the aptamer was labeled with ABEI and immobilized on magnetic beads (MBs) coated with gold. The aptamer was also labeled with ABEI and self-assembled on the MBs. A duplex was formed due to hybridization between the DNA aptamer and the DNA complementary to the aptamer. In the presence of the target L-argininamide, a stem-loop aptamer structure is formed which subsequently denatures the duplex. This switch from a duplex structure to a stem-loop structure causes the formation of single-stranded regions both in the target-aptamer and in the single-stranded DNA on the MBs. The nuclease hydrolyzes the single-stranded regions and single-stranded DNA. Ultimately, L-argininamide is released which then interacts with another aptamer on the MB, thereby leading to one more L-argininamide. This autocatalytic cycle can generate substantial quantities of ABEI which then can be sensitively determined by the diperiodatonickelate-isoniazide reaction system. L-argininamide can be detected in the concentration range from 3.0?×?10?4 to 3.0?×?10?7 M, and the limit of detection is 1.0?×?10?7 M.
Figure
A enantiomer assay for detection of L-argininamide was developed based on S1 nuclease hydrolysis of single-stranded regions of aptamer-target complex and the releasing of the L-argininamide. The released L-argininamide can then interact with another aptamer leading to many signal probes be generated. The L-argininamide assay exhibits high sensitivity and specificity.  相似文献   

11.
We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g?1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L?1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.
Figure
Schematic presentation of leaching process of mercury(II) ion from the prepared IIP  相似文献   

12.
We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20 μM concentration range and with a detection limit of ~430 nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine.
Figure
A“turn-on” fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution  相似文献   

13.
We have developed a specific method for the visual detection of Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification technology. A biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of a microplate via biotin-avidin binding. Then, the target bacteria (S. aureus), the biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and streptavidin-HRP were successively placed in the wells of the microplate. After adding TMB reagent and stop solution, the intensity of the yellow reaction product can be visually inspected or measured with a plate reader. Under optimized conditions, there is a linear relationship between absorbance at 450 nm and the concentration of S. aureus in the 10 to 107 cfu mL?1 concentration range (with an R2 of 0.9976). The limit of detection is 8 cfu mL?1.
Figure
A visual detection method for Staphylococcus aureus was based on aptamer recognition coupled to tyramine signal amplification. The linear range was from 10 to 107 cfu mL-1 and the limit of detection was 8 cfu mL-1.  相似文献   

14.
Water–soluble fluorescent silver nanoclusters (Ag NCs) were prepared with the assistance of commercially available polyinosinic acid (PI) or polycytidylic acid (PC). The fluorescence of the Ag NCs is effectively quenched by trace mercury(II) ions, which can be applied for their detection. The response of the Ag NCs prepared with PI to Hg(II) ion is linear in the Hg(II) concentration range from 0.05 to 1.0 μM (R2?=?0.9873), and from 0.5 to 10 μM of Hg(II) (R2?=?0.9971) for Ag NCs prepared with PC. The detection limits are 3.0 nM and 9.0 nM (at an S/N of 3), respectively. The method is simple, sensitive and fairly selective.
Figure
Water-soluble fluorescent Ag nanoclusters (NCs) were facilely prepared using commercially available polyinosinic acid or polycytidylic acid. The fluorescence intensity of the as-prepared Ag NCs was effectively quenched by trace Hg2+, which was used for the detection of Hg2+ in water samples with good performance.  相似文献   

15.
We report on a novel mercury(II)-controlled approach for the disassembly of gold nanorods (AuNRs) that has led to a detection system for Hg(II). The modified AuNRs were fabricated by functionalizing AuNRs with L-cysteine via a thiol group chemisorption-type of interaction. L-cysteine induces the assembly of AuNRs through cooperative electrostatic interaction upon which the color of the solution of the AuNRs changes from blue-green to gray dark. The addition of Hg(II), in turn, causes the disassembly of the modified AuNRs and the color of the solution returns to blue-green. This effect enables the optical determination of Hg(II) in aqueous solution, with a linear response in the 0.5 to 250 μM Hg(II) concentration range, an excellent selectivity for Hg(II), and with recoveries ranging from 99 % to 106 % in spiked environmental water samples.
Figure
A novel mercury-controlled approach for the disassembly of L-cysteine-modified Au nanorods was proposed, with which a simple, specific and sensitive assay for Hg2+ was developed.  相似文献   

16.
We report on a fluorescence resonance energy transfer (FRET)-based ratiometric sensor for the detection of Hg(II) ion. First, silica nanoparticles were labeled with a hydrophobic fluorescent nitrobenzoxadiazolyl dye which acts as a FRET donor. A spirolactam rhodamine was then covalently linked to the surface of the silica particles. Exposure of the nanoparticles to Hg(II) in water induced a ring-opening reaction of the spirolactam rhodamine moieties, leading to the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Hg(II) was accomplished by ratioing the fluorescence intensities at 520 nm and 578 nm. The average decay time for the donor decreases from 9.09 ns to 7.37 ns upon addition of Hg(II), which proves the occurrence of a FRET process. The detection limit of the assay is 100 nM (ca. 20 ppb). The sensor also exhibits a large Stokes shift (>150 nm) which can eliminate backscattering effects of excitation light.
Figure
A FRET-based ratiometric sensing system for Hg in water is built within the core/shell silica nanoparticle. This architecture ensures the control over the location of donor and acceptor, affording the system preferable for ratiometric sensing.  相似文献   

17.
Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where “A” denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic “b-type” ions.
Figure
?  相似文献   

18.
We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers.
Figure
A simple and sensitive fluorescent assay for oxytetracycline detection based on the different interaction intensity of fluorescein-labeled long-chain aptamer, G-quadruplex-OTC complex with reduced graphene oxide was designed.  相似文献   

19.
We have developed a “turn on” model of an electrochemiluminescence (ECL) based assay for lead ions. It is based on the formation of a G-quadruplex from an aptamer labeled with quantum dots (QDs) and placed on an electrode modified with of graphene and gold nanoparticles (AuNPs). A hairpin capture probe was labeled with a thiol group at the 5′-end and with an amino group at the 3′-end. It was then self-assembled on the electrode modified with graphene and AuNPs. In the absence of Pb(II), the amino tag on one end of the hairpin probe is close to the surface of the electrode and therefore unable to interact with the QDs because of steric hindrance. The ECL signal is quite weak in this case. If, however, Pb(II) is added, the stem-loop of the aptamer unfolds to form a G-quadruplex. The amino group at the 3′-end will become exposed and can covalently link to a carboxy group on the surface of the CdTe QDs. This leads to strong ECL. Its intensity increases (“turns on”) with the concentration of Pb(II). Such a “turn-on” method does not suffer from the drawbacks of “turn-off” methods. ECL intensity is linearly related to the concentration of Pb(II) in the 10 p mol·L?1 to 1 n mol·L?1 range, with a 3.8 p mol·L?1 detection limit. The sensor exhibits very low detection limits, good selectivity, satisfying stability, and good repeatability.
Figure
A “turn on” model of ECL method was developed based on G-quadruplex of Graphene/AuNPs of aptamer probe by using quantum dots as label. ECL intensity is increased with the increase of Pb2+ concentration. The responsive ECL intensity was linearly related to the Pb2+ concentration in the range of 1.0?×?10?11?~?1.0?×?10?9 mol·L?1, with a detection limit of 3.82?×?10?12 mol·L?1.  相似文献   

20.
We have developed an electrochemical sensor for highly selective and sensitive determination of Hg(II). It is based on the specific binding of 5-methyl-2-thiouracil (MTU) and Hg(II) to the surface of an indium tin oxide (ITO) electrode modified with a composite made from graphene oxide (GO) and gold nanoparticles (AuNPs). This leads to a largely enhanced differential pulse voltammetric response for Hg(II). Following optimization of the method, a good linear relationship (R?=?0.9920) is found between peak current and the concentration of Hg(II) in the 5.0–110.0 nM range. The limit of detection (LOD) is 0.78 nM at a signal-to-noise ratio of 3. A study on the interference by several metal ions revealed no interferences. The feasibility of this method was demonstrated by the analyses of real water samples. The LODs are 6.9, 1.0 and 1.9 nM for tap water, bottled water and lake water samples, respectively, and recoveries for the water samples spiked with 8.0, 50.0 and 100.0 nM were 83.9–96.8 %, with relative standard deviations ranging from 3.3 % to 5.2 %.
Figure
Schematic illustration of the enhanced electrochemical detection strategy for Hg(II) via specific interaction of 5-methyl-2-thiouracil (MTU) and Hg(II) based on graphene oxide and gold nanoparticles (GO-AuNPs) composites modified on the indium tin oxide (ITO) electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号